A self-healing electrically conductive organogel composite

被引:139
|
作者
Zhao, Yongyi [1 ,2 ]
Ohm, Yunsik [1 ,2 ]
Liao, Jiahe [1 ,3 ]
Luo, Yichi [1 ,2 ]
Cheng, Huai-Yu [4 ]
Won, Phillip [1 ,2 ]
Roberts, Peter [1 ,2 ]
Carneiro, Manuel Reis [2 ,5 ]
Islam, Mohammad F. F. [4 ]
Ahn, Jung Hyun [5 ]
Walker, Lynn M. M. [6 ]
Majidi, Carmel [1 ,2 ,3 ,4 ]
机构
[1] Carnegie Mellon Univ, Soft Machines Lab, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Mech Engn, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Robot Inst, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Mat Sci & Engn, Pittsburgh, PA 15213 USA
[5] Univ Coimbra, Inst Syst & Robot, Dept Elect & Comp Engn, Coimbra, Portugal
[6] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA USA
关键词
HYDROGEL COMPOSITES;
D O I
10.1038/s41928-023-00932-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Self-healing hydrogels use spontaneous intermolecular forces to recover from physical damage caused by extreme strain, pressure or tearing. Such materials are of potential use in soft robotics and tissue engineering, but they have relatively low electrical conductivity, which limits their application in stretchable and mechanically robust circuits. Here we report an organogel composite that is based on poly(vinyl alcohol)-sodium borate and has high electrical conductivity (7 x 10(4) S m(-1)), low stiffness (Young's modulus of similar to 20 kPa), high stretchability (strain limit of >400%) and spontaneous mechanical and electrical self-healing. The organogel matrix is embedded with silver microflakes and gallium-based liquid metal microdroplets, which form a percolating network, leading to high electrical conductivity in the material. We also overcome the rapid drying problem of the hydrogel material system by replacing water with an organic solvent (ethylene glycol), which avoids dehydration and property changes for over 24 h in an ambient environment. We illustrate the capabilities of the self-healing organogel composite by using it in a soft robot, a soft circuit and a reconfigurable bioelectrode.
引用
收藏
页码:206 / 215
页数:10
相关论文
共 50 条
  • [41] Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications
    Su, Gehong
    Yin, Shuya
    Guo, Youhong
    Zhao, Fei
    Guo, Quanquan
    Zhang, Xinxing
    Zhou, Tao
    Yu, Guihua
    MATERIALS HORIZONS, 2021, 8 (06) : 1795 - 1804
  • [42] Self-healing structural composite materials
    Kessler, MR
    Sottos, NR
    White, SR
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2003, 34 (08) : 743 - 753
  • [43] Research on Self-healing Composite Materials
    Li, Peng
    Zou, Tian
    Liu, Yuan
    Wang, Yuhua
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONIC, INDUSTRIAL AND CONTROL ENGINEERING, 2015, 8 : 427 - 430
  • [44] The self-healing composite anticorrosion coating
    Zhao Yang
    Zhang Wei
    Liao Le-ping
    Wang Hong-mei
    Li Wu-jun
    PROCEEDING OF THE FOURTH INTERNATIONAL CONFERENCE ON SURFACE AND INTERFACE SCIENCE AND ENGINEERING, 2011, 18
  • [45] Self-healing composite sandwich structures
    Williams, H. R.
    Trask, R. S.
    Bond, I. P.
    SMART MATERIALS AND STRUCTURES, 2007, 16 (04) : 1198 - 1207
  • [46] Self-Healing Sandwich Composite Structures
    Fugon, D.
    Chen, C.
    Peters, K.
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2012, PTS 1 AND 2, 2012, 8345
  • [47] A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material
    Wu, Min
    Johannesson, Bjorn
    Geiker, Mette
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 28 (01) : 571 - 583
  • [48] A self-healing thermosetting composite material
    Hayes, S. A.
    Jones, F. R.
    Marshiya, K.
    Zhang, W.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (04) : 1116 - 1120
  • [49] Healing and self-healing polymers: composite networks revisited
    Ciferri, Alberto
    POLYMER CHEMISTRY, 2013, 4 (18) : 4980 - 4986
  • [50] A mechanically and electrically self-healing graphite composite dough for stencil-printable stretchable conductors
    Wu, Tongfei
    Chen, Biqiong
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (19) : 4150 - 4154