Cellulose-Based Scaffolds: A Comparative Study for Potential Application in Articular Cartilage

被引:4
作者
Cordeiro, Rachel [1 ,2 ]
Alvites, Rui D. D. [2 ,3 ,4 ]
Sousa, Ana C. C. [2 ,3 ,4 ]
Lopes, Bruna [2 ,3 ,4 ]
Sousa, Patricia [2 ,3 ,4 ]
Mauricio, Ana C. C. [2 ,3 ,4 ]
Alves, Nuno [1 ,5 ]
Moura, Carla [1 ,5 ,6 ]
机构
[1] Polytech Leiria, Ctr Rapid & Sustainable Prod Dev, P-2430028 Leiria, Portugal
[2] Univ Porto UP, Abel Salazar Biomed Sci Inst ICBAS, Vet Clin Dept, Rua Jorge Viterbo Ferreira,228, P-4050313 Porto, Portugal
[3] Univ Porto, Agroenvironm Technol & Sci Inst ICETA, Anim Sci Studies Ctr CECA, Rua D Manuel II,Apartado 55142, P-4051401 Porto, Portugal
[4] Associate Lab Anim & Vet Sci AL4AnimalS, P-1300477 Lisbon, Portugal
[5] Associate Lab Adv Prod & Intelligent Syst ARISE, P-4050313 Porto, Portugal
[6] Polytech Inst Coimbra, Appl Res Inst i2A, Rua Misericordia,Lagar Cort S Martinho Bispo, P-3045093 Coimbra, Portugal
关键词
cartilage repair; PCL; cellulose; scaffold; tissue engineering; EPSILON-CAPROLACTONE SCAFFOLDS; PULP STEM-CELLS; CHONDROGENIC DIFFERENTIATION; TISSUE; REGENERATION;
D O I
10.3390/polym15030781
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Osteoarthritis is a highly prevalent disease worldwide that leads to cartilage loss. Tissue engineering, involving scaffolds, cells, and stimuli, has shown to be a promising strategy for its repair. Thus, this study aims to manufacture and characterise different scaffolds with poly(epsilon-caprolactone) (PCL) with commercial cellulose (microcrystalline (McC) and methyl cellulose (MC) or cellulose from agro-industrial residues (corncob (CcC)) and at different percentages, 1%, 2%, and 3%. PCL scaffolds were used as a control. Morphologically, the produced scaffolds presented porosities within the desired for cell incorporation (57% to 65%). When submitted to mechanical tests, the incorporation of cellulose affects the compression resistance of the majority of scaffolds. Regarding tensile strength, McC2% showed the highest values. It was proven that all manufactured scaffolds suffered degradation after 7 days of testing because of enzymatic reactions. This degradation may be due to the dissolution of PCL in the organic solvent. Biological tests revealed that PCL, CcC1%, and McC3% are the best materials to combine with human dental pulp stem/stromal cells. Overall, results suggest that cellulose incorporation in PCL scaffolds promotes cellular adhesion/proliferation. Methyl cellulose scaffolds demonstrated some advantageous compressive properties (closer to native cartilaginous tissue) to proceed to further studies for application in cartilage repair.
引用
收藏
页数:20
相关论文
共 51 条
[1]   Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications [J].
Alavi, Mehran .
E-POLYMERS, 2019, 19 (01) :103-119
[2]   Polycaprolactone-carboxymethyl cellulose composites for manufacturing porous scaffolds by material extrusion [J].
Aleman-Dominguez, M. E. ;
Ortega, Z. ;
Benitez, A. N. ;
Monzon, Mario ;
Garzon, L., V ;
Ajami, Sara ;
Liu, Chaozong .
BIO-DESIGN AND MANUFACTURING, 2018, 1 (04) :245-253
[3]   Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds [J].
Aleman-Dominguez, Maria Elena ;
Giusto, Elena ;
Ortega, Zaida ;
Tamaddon, Maryam ;
Nizardo Benitez, Antonio ;
Liu, Chaozong .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2019, 107 (03) :521-528
[4]   Combined Use of Chitosan and Olfactory Mucosa Mesenchymal Stem/Stromal Cells to Promote Peripheral Nerve Regeneration In Vivo [J].
Alvites, Rui D. ;
Branquinho, Mariana V. ;
Sousa, Ana C. ;
Amorim, Irina ;
Magalhaes, Rui ;
Joao, Filipa ;
Almeida, Diogo ;
Amado, Sandra ;
Prada, Justina ;
Pires, Isabel ;
Zen, Federica ;
Raimondo, Stefania ;
Luis, Ana L. ;
Geuna, Stefano ;
Varejao, Artur S. P. ;
Mauricio, Ana C. .
STEM CELLS INTERNATIONAL, 2021, 2021
[5]   Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications [J].
Arif, Zia Ullah ;
Khalid, Muhammad Yasir ;
Noroozi, Reza ;
Sadeghianmaryan, Ali ;
Jalalvand, Meisam ;
Hossain, Mokarram .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 218 :930-968
[6]  
Athanasiou K.A., 2009, Synthesis Lectures on Tissue Engineering, V1, P1, DOI [DOI 10.2200/S00186ED1V01Y200903TIS001, DOI 10.2200/S00212ED1V01Y200910TIS003]
[7]   Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance [J].
Biscaia, Sara ;
Silva, Joao C. ;
Moura, Carla ;
Viana, Tania ;
Tojeira, Ana ;
Mitchell, Geoffrey R. ;
Pascoal-Faria, Paula ;
Ferreira, Frederico Castelo ;
Alves, Nuno .
POLYMERS, 2022, 14 (09)
[8]   Applications of bacterial-synthesized cellulose in veterinary medicine - a review [J].
Bodea, Ioana Maria ;
Catunescu, Giorgiana Mihaela ;
Stroe, Teodor Florian ;
Dirlea, Sonia Alexandra ;
Beteg, Florin Joan .
ACTA VETERINARIA BRNO, 2019, 88 (04) :451-471
[9]   Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells [J].
Boncler, Magdalena ;
Rozalski, Marek ;
Krajewska, Urszula ;
Podsedek, Anna ;
Watala, Cezary .
JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 2014, 69 (01) :9-16
[10]   In Vitro and In Vivo Characterization of PLLA-316L Stainless Steel Electromechanical Devices for Bone Tissue Engineering-A Preliminary Study [J].
Branquinho, Mariana, V ;
Ferreira, Sheila O. ;
Alvites, Rui D. ;
Magueta, Adriana F. ;
Ivanov, Maxim ;
Sousa, Ana Catarina ;
Amorim, Irina ;
Faria, Fatima ;
Fernandes, M. H., V ;
Vilarinho, Paula M. ;
Mauricio, Ana Colette .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (14)