Comparing h-BN and MgO tunnel barriers for scaled magnetic tunnel junctions

被引:2
|
作者
Robertson, J. [1 ,2 ]
Naganuma, H. [2 ]
Lu, H. [3 ]
机构
[1] Univ Cambridge, Engn Dept, 9 J J Thomson Ave, Cambridge CB3 0FA, England
[2] Tohoku Univ, Ctr Spintron & Integrated Syst CSIS, Sendai 9808577, Japan
[3] Beihang Univ, Sch Integrated Circuit Sci, Beijing 100191, Peoples R China
关键词
spintronics; layered materials; magnetic tunnel junctions; scaling; MAGNETORESISTANCE;
D O I
10.35848/1347-4065/acb062
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic tunnel junctions (MTJ) with MgO/Fe based interfaces and perpendicular spin directions form the basis of present-day spin-transfer torque magnetic random-access memories. Many semiconductor devices, such as CMOS transistors, have undergone fundamental changes in materials design as dimensional scaling has progressed. Here, we consider how future scaling of MTJs might affect materials choices, comparing different tunnel barriers, such as 2D h-BN materials with existing MgO tunnel barriers. The different interfacial sites of h-BN on Ni or Co are compared in terms of their physisorptive or chemisorptive bonding and how this affects their transmission magnetoresistance, ability to create perpendicular magnetic isotropy, and unusual factors such as the "pillow effect." These effects are balanced by the beneficial chemical thermodynamics of the existing MgO barriers and MgO/Fe interfaces.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Radiation Tolerance of Magnetic Tunnel Junctions With MgO Tunnel Barriers
    Ren, Fanghui
    Jander, Albrecht
    Dhagat, Pallavi
    Nordman, Cathy
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (06) : 3034 - 3038
  • [2] Manganese diffusion in annealed magnetic tunnel junctions with MgO tunnel barriers
    Larson, D. J.
    Marquis, E. A.
    Rice, P. M.
    Prosa, T. J.
    Geiser, B. P.
    Yang, S. -H.
    Parkin, S. S. P.
    SCRIPTA MATERIALIA, 2011, 64 (07) : 673 - 676
  • [3] Comparison of hexagonal boron nitride and MgO tunnel barriers in Fe,Co magnetic tunnel junctions
    Lu, H.
    Robertson, J.
    Naganuma, H.
    APPLIED PHYSICS REVIEWS, 2021, 8 (03):
  • [4] Fabrication of Fe/MgO/Gd Magnetic Tunnel Junctions
    Takahashi, Y. T.
    Shiota, Y.
    Miwa, S.
    Bonell, F.
    Mizuochi, N.
    Shinjo, T.
    Suzuki, Y.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (07) : 4417 - 4420
  • [5] Boron diffusion in magnetic tunnel junctions with MgO (001) barriers and CoFeB electrodes
    Kurt, H.
    Rode, K.
    Oguz, K.
    Boese, M.
    Faulkner, C. C.
    Coey, J. M. D.
    APPLIED PHYSICS LETTERS, 2010, 96 (26)
  • [6] Flexible MgO Barrier Magnetic Tunnel Junctions
    Loong, Li Ming
    Lee, Wonho
    Qiu, Xuepeng
    Yang, Ping
    Kawai, Hiroyo
    Saeys, Mark
    Ahn, Jong-Hyun
    Yang, Hyunsoo
    ADVANCED MATERIALS, 2016, 28 (25) : 4983 - 4990
  • [7] Dielectric breakdown of MgO magnetic tunnel junctions
    Dimitrov, D. V.
    Gao, Zheng
    Wang, Xiaobin
    Jung, Wonjoon
    Lou, Xiaohua
    Heinonen, Olle G.
    APPLIED PHYSICS LETTERS, 2009, 94 (12)
  • [8] Transport properties of MgO magnetic tunnel junctions
    Dimitrov, D. V.
    Gao, Zheng
    Wang, Xiaobin
    Jung, Wonjoon
    Lou, Xiaohua
    Heinonen, Olle
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
  • [9] Magnetic tunnel junctions with single-layer-graphene tunnel barriers
    Li, Wan
    Xue, Lin
    Abruna, H. D.
    Ralph, D. C.
    PHYSICAL REVIEW B, 2014, 89 (18):
  • [10] MgO tunnel barriers in magnetic nanostructures and devices
    Heindl, R.
    Pufall, M. R.
    Rippard, W. H.
    DIELECTRICS FOR NANOSYSTEMS 4: MATERIALS SCIENCE, PROCESSING, RELIABILITY, AND MANUFACTURING, 2010, 28 (02): : 477 - 487