State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles

被引:41
|
作者
Li, Guanzheng [1 ,2 ]
Li, Bin [1 ,2 ]
Li, Chao [1 ,2 ]
Wang, Shuai [1 ,2 ]
机构
[1] Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Natl Ind Educ Platform Energy Storage, Tianjin, Peoples R China
关键词
Stacking ensemble model; Interpretable machine learning; Short-term voltage profile; State of health; Bayesian optimization algorithm; Battery aging; DATA-DRIVEN METHOD; REMAINING USEFUL LIFE; CAPACITY ESTIMATION; ONLINE ESTIMATION; PREDICTION; REGRESSION; DIAGNOSIS; SYSTEM; CHARGE; FILTER;
D O I
10.1016/j.energy.2022.126064
中图分类号
O414.1 [热力学];
学科分类号
摘要
Lithium-ion batteries are playing an increasingly important role in industrial applications such as electrical vehicles and energy storage systems. Their working performance and operation safety are significantly impacted by state of health (SOH), which will decrease after cycles of charging and discharging. This paper has proposed a novel two-stage SOH estimation method that can realize SOH estimation flexibly, rapidly and robustly. In the first stage, eight typical 300-s voltage profiles are used for describing the whole charging process and multiple aging features are extracted. Then, a novel stacking ensemble model with five base models is proposed. In the second stage, a Shapley additive explanation approach is introduced to obtain the contributions of features and understand why a prediction is made, thus reducing the concern of applying black-box model. The performance of the proposed model is verified using two different battery degradation datasets and the results show that the accuracy of the proposed model is better than conventional machine learning models including lightGBM, XGBoost, RF, SVR, and GPR. In addition, with various forms of noise interference, the proposed stacking model is proved to be more robust than conventional machine learning models.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A Data-Driven Comparative Analysis of Lithium-Ion Battery State of Health and Capacity Estimation
    Sheikh, Shehzar Shahzad
    Shah, Fawad Ali
    Athar, Syed Owais
    Khalid, Hassan Abdullah
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2023, 51 (01) : 1 - 11
  • [32] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [33] A novel state-of-health estimation for the lithium-ion battery using a convolutional neural network and transformer model
    Gu, Xinyu
    See, K. W.
    Li, Penghua
    Shan, Kangheng
    Wang, Yunpeng
    Zhao, Liang
    Lim, Kai Chin
    Zhang, Neng
    ENERGY, 2023, 262
  • [34] State of Health Estimation for Lithium-Ion Battery Based on Long Short Term Memory Networks
    Chen, Zheng
    Song, Xinyue
    Xiao, Renxin
    Shen, Jiangwei
    Xia, Xuelei
    JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018, 2018,
  • [35] A State-of-Health Estimation Method of a Lithium-Ion Power Battery for Swapping Stations Based on a Transformer Framework
    Shi, Yu
    Xie, Haicheng
    Wang, Xinhong
    Lu, Xiaoming
    Wang, Jing
    Xu, Xin
    Wang, Dingheng
    Chen, Siyan
    BATTERIES-BASEL, 2025, 11 (01):
  • [36] A Novel Online State-of-Health Estimation Method for Lithium-Ion Batteries with Multi-Input Metabolic Long Short-Term Memory Framework
    Chen, Lin
    Chen, Deqian
    He, Manping
    Pan, Haihong
    Ji, Bing
    ENERGIES, 2025, 18 (05)
  • [37] State-of-health and remaining-useful-life estimations of lithium-ion battery based on temporal convolutional network-long short-term memory
    Li, Chaoran
    Han, Xianjie
    Zhang, Qiang
    Li, Menghan
    Rao, Zhonghao
    Liao, Wei
    Liu, Xiaori
    Liu, Xinjian
    Li, Gang
    JOURNAL OF ENERGY STORAGE, 2023, 74
  • [38] Lithium-Ion Battery Ageing Behavior Pattern Characterization and State-of-Health Estimation Using Data-Driven Method
    Xia, Zhiyong
    Abu Qahouq, Jaber A.
    IEEE ACCESS, 2021, 9 : 98287 - 98304
  • [39] A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    ENERGIES, 2023, 16 (14)
  • [40] State-of-health estimation for the lithium-ion battery based on gradient boosting decision tree with autonomous selection of excellent features
    Zhang, Zhiqi
    Li, Li
    Li, Xi
    Hu, Yuchen
    Huang, Kai
    Xue, Bingya
    Wang, Yuqi
    Yu, Yajuan
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (02) : 1756 - 1765