A dense residual U-net for multiple sclerosis lesions segmentation from multi-sequence 3D MR images

被引:10
作者
Sarica, Beytullah [1 ]
Seker, Dursun Zafer [2 ]
Bayram, Bulent [3 ]
机构
[1] Istanbul Tech Univ, Grad Sch, Dept Appl Informat, TR-34469 Istanbul, Turkey
[2] Istanbul Tech Univ, Civil Engn Fac, Dept Geomatics Engn, TR-34469 Istanbul, Turkey
[3] Yildiz Tech Univ, Civil Engn Fac, Dept Geomatics Engn, TR-34220 Istanbul, Turkey
关键词
Multiple sclerosis (MS); MS lesion segmentation; MRI; U-net; Convolutional neural networks; Deep learning; Residual blocks; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1016/j.ijmedinf.2022.104965
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multiple Sclerosis (MS) is an autoimmune disease that causes brain and spinal cord lesions, which magnetic resonance imaging (MRI) can detect and characterize. Recently, deep learning methods have achieved remarkable results in the automated segmentation of MS lesions from MRI data. Hence, this study proposes a novel dense residual U-Net model that combines attention gate (AG), efficient channel attention (ECA), and Atrous Spatial Pyramid Pooling (ASPP) to enhance the performance of the automatic MS lesion segmentation using 3D MRI sequences. First, convolution layers in each block of the U-Net architecture are replaced by residual blocks and connected densely. Then, AGs are exploited to capture salient features passed through the skip connections. The ECA module is appended at the end of each residual block and each downsampling block of U-Net. Later, the bottleneck of U-Net is replaced with the ASSP module to extract multi-scale contextual information. Furthermore, 3D MR images of Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted (T1-w), and T2-weighted (T2-w) are exploited jointly to perform better MS lesion segmentation. The proposed model is validated on the publicly available ISBI2015 and MSSEG2016 challenge datasets. This model produced an ISBI score of 92.75, a mean Dice score of 66.88%, a mean positive predictive value (PPV) of 86.50%, and a mean lesion-wise true positive rate (LTPR) of 60.64% on the ISBI2015 testing set. Also, it achieved a mean Dice score of 67.27%, a mean PPV of 65.19%, and a mean sensitivity of 74.40% on the MSSEG2016 testing set. The results show that the proposed model performs better than the results of some experts and some of the other state-of-the-art methods realized related to this particular subject. Specifically, the best Dice score and the best LTPR are obtained on the ISBI2015 testing set by using the proposed model to segment MS lesions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Interactive 3D U-net for the segmentation of the pancreas in computed tomography scans
    Boers, T. G. W.
    Hu, Y.
    Gibson, E.
    Barratt, D. C.
    Bonmati, E.
    Krdzalic, J.
    van der Heijden, F.
    Hermans, J. J.
    Huisman, H. J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (06)
  • [42] Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms
    Zhao, Tongtong
    Sun, Zhaonan
    Guo, Ying
    Sun, Yumeng
    Zhang, Yaofeng
    Wang, Xiaoying
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [43] DEU-Net: Dual Encoder U-Net for 3D Medical Image Segmentation
    Zhou, Yuxiang
    Kang, Xin
    Ren, Fuji
    Nakagawa, Satoshi
    Shan, Xiao
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 2735 - 2741
  • [44] Automatic segmentation of brain tumor in intraoperative ultrasound images using 3D U-Net
    Carton, Francois-Xavier
    Chabanas, Matthieu
    Munkvold, Bodil K. R.
    Reinertsen, Ingerid
    Noble, Jack H.
    MEDICAL IMAGING 2020: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11315
  • [45] BTIS-Net: Efficient 3D U-Net for Brain Tumor Image Segmentation
    Liu, Li
    Xia, Kaijian
    IEEE ACCESS, 2024, 12 : 133392 - 133405
  • [46] Prior-based 3D U-Net: A model for knee-cartilage segmentation in MRI images
    Liu, Hao
    Sun, Yiran
    Cheng, Xiangyun
    Jiang, Dong
    COMPUTERS & GRAPHICS-UK, 2023, 115 : 167 - 180
  • [47] Brain tumor segmentation using a hybrid multi resolution U-Net with residual dual attention and deep supervision on MR images
    Sahayam, Subin
    Nenavath, Rahul
    Jayaraman, Umarani
    Prakash, Surya
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [48] Automatic brain tumor segmentation from Multiparametric MRI based on cascaded 3D U-Net and 3D U-Net++
    Li, Pengyu
    Wu, Wenhao
    Liu, Lanxiang
    Serry, Fardad Michael
    Wang, Jinjia
    Han, Hui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [49] SAR U-Net: Spatial attention residual U-Net structure for water body segmentation from remote sensing satellite images
    Naga Surekha Jonnala
    Neha Gupta
    Multimedia Tools and Applications, 2024, 83 : 44425 - 44454
  • [50] SAR U-Net: Spatial attention residual U-Net structure for water body segmentation from remote sensing satellite images
    Jonnala, Naga Surekha
    Gupta, Neha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 44425 - 44454