A closer look at referring expressions for video object segmentation

被引:11
作者
Bellver, Miriam [1 ]
Ventura, Carles [2 ]
Silberer, Carina [3 ]
Kazakos, Ioannis [4 ]
Torres, Jordi [1 ]
Giro-i-Nieto, Xavier [5 ,6 ]
机构
[1] Barcelona Supercomp Ctr BSC, Barcelona, Spain
[2] Univ Oberta Catalunya UOC, Barcelona, Spain
[3] Univ Stuttgart, Inst NLP, Stuttgart, Germany
[4] Natl Tech Univ Athens, Athens, Greece
[5] Univ Politecn Catalunya UPC, Barcelona, Catalonia, Spain
[6] CSIC UPC, Inst Robot & Informat Ind, Barcelona, Catalonia, Spain
关键词
Referring expressions; Video object segmentation; Vision and language;
D O I
10.1007/s11042-022-13413-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The task of Language-guided Video Object Segmentation (LVOS) aims at generating binary masks for an object referred by a linguistic expression. When this expression unambiguously describes an object in the scene, it is named referring expression (RE). Our work argues that existing benchmarks used for LVOS are mainly composed of trivial cases, in which referents can be identified with simple phrases. Our analysis relies on a new categorization of the referring expressions in the DAVIS-2017 and Actor-Action datasets into trivial and non-trivial REs, where the non-trivial REs are further annotated with seven RE semantic categories. We leverage these data to analyze the performance of RefVOS, a novel neural network that obtains competitive results for the task of language-guided image segmentation and state of the art results for LVOS. Our study indicates that the major challenges for the task are related to understanding motion and static actions.
引用
收藏
页码:4419 / 4438
页数:20
相关论文
共 52 条
[31]   Generation and Comprehension of Unambiguous Object Descriptions [J].
Mao, Junhua ;
Huang, Jonathan ;
Toshev, Alexander ;
Camburu, Oana ;
Yuille, Alan ;
Murphy, Kevin .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :11-20
[32]   Modeling Context Between Objects for Referring Expression Understanding [J].
Nagaraja, Varun K. ;
Morariu, Vlad I. ;
Davis, Larry S. .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :792-807
[33]  
Pennington J., 2014, Proceedings of the Empiricial Methods in Natural Language Processing EMNLP 2014, DOI 10.3115/v1/D14-1162
[34]   A Benchmark Dataset and Evaluation Methodology for Video Object Segmentation [J].
Perazzi, F. ;
Pont-Tuset, J. ;
McWilliams, B. ;
Van Gool, L. ;
Gross, M. ;
Sorkine-Hornung, A. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :724-732
[35]  
Pont-Tuset J, 2017, ARXIV
[36]   Pre-trained models for natural language processing: A survey [J].
Qiu XiPeng ;
Sun TianXiang ;
Xu YiGe ;
Shao YunFan ;
Dai Ning ;
Huang XuanJing .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) :1872-1897
[37]  
Reiter Ehud., 1992, Proceedings of the 14th conference on Computational linguistics-Volume 1, V1, P232
[38]   How Redundant Are Redundant Color Adjectives? An Efficiency-Based Analysis of Color Overspecification [J].
Rubio-Fernandez, Paula .
FRONTIERS IN PSYCHOLOGY, 2016, 7
[39]  
Seo S., 2020, ECCV
[40]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556