Effect of injection timing and duration on the performance of diesel engine fueled with port injection of oxygenated fuels

被引:12
|
作者
Swamy, L. Ranganatha [1 ]
Banapurmath, N. R. [2 ]
Chandrashekar, T. K. [3 ]
Soudagar, Manzoore Elahi M. [4 ,5 ]
Gul, M. [5 ]
Nik-Ghazali, Nik-Nazri [5 ]
Mujtaba, M. A. [5 ]
Shahapurkar, Kiran [6 ]
Agbulut, Umit [7 ]
Alshehri, Hashim M. [8 ]
Sajjan, A. M. [9 ]
Goodarzi, Marjan [10 ,11 ]
机构
[1] Adichunchanagiri Univ, Dept Mech Engn, BGSIT, Mandya, India
[2] KLE Technol Univ, BVB Coll Engn & Technol, Sch Mech Engn, Hubballi, India
[3] Mangalore Inst Technol & Engn, Dept Mech Engn, Moodbidri, India
[4] Glocal Univ, Sch Technol, Dept Mech Engn, Saharanpur, Uttar Pradesh, India
[5] Univ Malaya, Fac Engn, Dept Mech Engn, Kuala Lumpur, Malaysia
[6] Adama Sci & Technol Univ, Sch Mech Chem & Mat Engn, Adama, Ethiopia
[7] Duzce Univ, Fac Engn, Mech Engn Dept, Duzce, Turkey
[8] King Abdulaziz Univ, Fac Engn, Jeddah, Saudi Arabia
[9] KLE Technol Univ, Dept Chem, Hubballi, Karnataka, India
[10] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[11] Lamar Univ, Dept Mech Engn, Beaumont, TX 77710 USA
关键词
Fumigation; injection duration; manifold injection; optimization; oxygenates; FUMIGATION; OIL; COMBUSTION; PREDICTION; NANOFLUID; VISCOSITY; BLENDS; MODEL; ANN;
D O I
10.1080/00986445.2021.2013211
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An alarming adulteration of nature with automotive tail pipe emissions causing global warming demands suitable engine modification. Further use of alternative renewable fuels with fine-tuning the engine and required modifications could reduce the diesel engine emissions. Oxygenated fuels (such as methanol, ethanol and Butanol) act as stand-in fuel that could enrich the global energy requisites and affirmatively downsize the emissions by accelerating combustion efficiency. Under this circumstance, the experimental analysis was done on a single-cylinder four-stroke DI CI engine using conventional diesel as fuel by injection of ethanol, diethyl ether (DEE) and Butanol independently to into intake manifold at three injection timings viz., TDC, 5 degrees ATDC and 10 degrees ATDC respectively under the constant 27 degrees CA injection duration with the help of a distinct setup comprises of the electronic control unit (ECU) and injector system. The resolutions drawn from the recorded results at 80% load during experimentation summarized that DEE exhibited improved BTE of 2.5% and 1% and reduced smoke emissions of 12.54% and 10.6% compared to that obtained with ethanol and Butanol, respectively. On the other hand, DEE emitted excessive NOx and inferior HC, CO emissions compared to ethanol and Butanol apart from shortened ignition delay and combustion duration. The conclusions are drawn from the injection of oxygenates that apart from the perspective of performance, DEE injection at the 5 degrees ATDC was noticed to be optimal at 27 degrees CA injection duration (3 ms) too for emissions characteristics of a diesel engine.
引用
收藏
页码:1060 / 1072
页数:13
相关论文
共 50 条