On the Trajectory of a Light Small Rigid Body in an Incompressible Viscous Fluid

被引:0
|
作者
Bravin, Marco [1 ]
Necasova, Sarka [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, Mekelweg 4, NL-2628 CD Delft, Netherlands
[2] Czech Acad Sci, Inst Math, Gitna 25,115 67 Praha 1, Prague, Czech Republic
基金
荷兰研究理事会;
关键词
PDEs; Fluid-structure interaction; Asymptotic limit; Navier-Stokes; Rigid body; WEAK SOLUTIONS; MOTION; EXISTENCE; BODIES; DYNAMICS; SYSTEM;
D O I
10.1007/s00332-024-10022-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the dynamics of a small rigid body in a viscous incompressible fluid in dimension two and three. More precisely we investigate the trajectory of the rigid body in the limit when its mass and its size tend to zero. We show that the velocity of the center of mass of the rigid body coincides with the background fluid velocity in the limit. We are able to consider the limit when the volume of the rigid bodies converges to zero while their densities are a fixed constant.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number
    Kolumban, Jozsef J.
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 1135 - 1144
  • [22] On the Self-Recovery Phenomenon for a Cylindrical Rigid Body Rotating in an Incompressible Viscous Fluid
    Chang, Dong Eui
    Jeon, Soo
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2015, 137 (02):
  • [23] Existence of contacts for the motion of a rigid body into a viscous incompressible fluid with the Tresca boundary conditions
    Hillairet, Matthieu
    Takahashi, Takeo
    TUNISIAN JOURNAL OF MATHEMATICS, 2021, 3 (03) : 447 - 468
  • [24] WELLPOSEDNESS FOR THE SYSTEM MODELLING THE MOTION OF A RIGID BODY OF ARBITRARY FORM IN AN INCOMPRESSIBLE VISCOUS FLUID
    Cumsille, Patricio
    Takahashi, Takeo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 961 - 992
  • [25] Motion of a rigid body in a viscous fluid
    Conca, C
    San Martín, J
    Tucsnak, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (06): : 473 - 478
  • [26] ON A MODEL OF AN ELASTIC BODY FULLY IMMERSED IN A VISCOUS INCOMPRESSIBLE FLUID WITH SMALL DATA
    Kukavica, Igor
    Ozanski, Wojciech s.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 746 - 761
  • [27] Simulation of Body Motion in Viscous Incompressible Fluid
    Kozelkov, A. S.
    Efremov, V. R.
    Kurkin, A. A.
    Tarasova, N. V.
    Utkin, D. A.
    Tyatyushkina, E. S.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2019, 12 (03) : 219 - 233
  • [28] Simulation of Body Motion in Viscous Incompressible Fluid
    A. S. Kozelkov
    V. R. Efremov
    A. A. Kurkin
    N. V. Tarasova
    D. A. Utkin
    E. S. Tyatyushkina
    Numerical Analysis and Applications, 2019, 12 : 219 - 233
  • [29] UNSTEADY MOTION OF A BODY IN VISCOUS INCOMPRESSIBLE FLUID
    KRUGLOV, VI
    DOKLADY AKADEMII NAUK BELARUSI, 1977, 21 (06): : 521 - 524
  • [30] Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid
    Patricio Cumsille
    Takéo Takahashi
    Czechoslovak Mathematical Journal, 2008, 58 : 961 - 992