CFD-DEM model of a cold plasma assisted fluidized bed powder coating process

被引:1
|
作者
Martin-Salvador, P. [1 ,2 ]
Verschueren, R. H. [3 ]
De Beer, T. [2 ]
Kumar, A. [1 ]
机构
[1] Univ Ghent, Dept Pharmaceut Anal, Pharmaceut Engn Res Grp PharmaEng, Ghent, Belgium
[2] Univ Ghent, Dept Pharmaceut Anal, Lab Pharmaceut Proc Analyt Technol LPPAT, Ghent, Belgium
[3] PartiX NV, Res & Dev, Leuven, Belgium
来源
FRONTIERS IN CHEMICAL ENGINEERING | 2024年 / 6卷
关键词
plasma coating; fluidization; cold plasma; process simulation; powder coating; CFD-DEM; PARTICLE; SIMULATION; FLOW;
D O I
10.3389/fceng.2024.1347313
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cold plasma coating technology for surface functionalization of pharmaceutical powder particles is a promising approach to introduce new characteristics such as controlled release layers, improved powder flow properties, stability coatings, and binding of active components to the surface. This is typically achieved in a fluidized bed reactor, where a jet containing the chemical precursor and the plasma afterglow is introduced through a nozzle while extra fluidization gas is injected from the bottom plate. However, the process requires proper mixing of the particles and precursor inside the plasma active zone to ensure a homogeneous coating of all particles. Therefore, such coating processes are challenging to optimize, given the complex phenomena involved in fluidization, plasma species reactions, and surface reactions. In this study, we use the CFD-DEM approach as implemented in the CFDEM (R) coupling package to model the process. The functionalization rate is modeled as mass transfer from the surrounding gas onto the particles, using a plasma coating zone where this transfer may happen. Mass transfer is switched off outside this zone. The DEM contact parameters and drag force are calibrated to our cellulose beads model powder using experimental tests composed by the FT4 rheometer and spouting tests. We show that while the chemistry can make or break the process, the equipment design and process conditions have a non-negligible effect on the coating metrics and thus must be considered. Cases where the fluidization flow is not high enough to produce good mixing have a high coefficient of variation of the coating mass, and therefore, they must be avoided. In addition, we also proposed an extrapolation procedure to provide results at longer coating times, showing that it is possible to predict coating performance even when simulations of the process for more than a minute are not computationally efficient.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Novel CFD-DEM approach for analyzing spherical and non-spherical shape particles in spouted fluidized bed
    Mishra, Rajat
    Arora, Amit
    PARTICULATE SCIENCE AND TECHNOLOGY, 2024, 42 (02) : 288 - 300
  • [32] CFD-DEM Simulation of Spouted Bed Dynamics under High Temperature with an Adhesive Model
    Chen, Zhao
    Jiang, Lin
    Qiu, Mofan
    Chen, Meng
    Liu, Rongzheng
    Liu, Malin
    ENERGIES, 2021, 14 (08)
  • [33] Coupling CFD-DEM with cohesive force and chemical reaction sub-models for biomass combustion in a fluidized bed
    Lian, Guoqing
    Zhong, Wenqi
    FUEL, 2023, 350
  • [34] A Mixing Behavior Study of Biomass Particles and Sands in Fluidized Bed Based on CFD-DEM Simulation
    Wang, Heng
    Zhong, Zhaoping
    ENERGIES, 2019, 12 (09)
  • [35] CFD-DEM simulation study on the bed dynamics of a binary mixture with super-quadric particles in a fluidized bed
    Wang, Ju
    Bao, Guirong
    POWDER TECHNOLOGY, 2025, 449
  • [36] CFD-DEM study on fluidization characteristics of gas-solid fluidized bed reactor containing ternary mixture
    Zhang, Hao
    Qiao, Wanbing
    An, Xizhong
    Ye, Xinglian
    Chen, Jiang
    POWDER TECHNOLOGY, 2022, 401
  • [37] CFD-DEM Simulation of Biomass Pyrolysis in Fluidized-Bed Reactor with a Multistep Kinetic Scheme
    Chen, Tao
    Ku, Xiaoke
    Lin, Jianzhong
    Strom, Henrik
    ENERGIES, 2020, 13 (20)
  • [38] Numerical investigation of pulsed fluidized bed using CFD-DEM: Insights on the dynamics
    de Oliveira, D. G.
    Wu, C. L.
    Nandakumar, K.
    POWDER TECHNOLOGY, 2020, 363 : 745 - 756
  • [39] Wall-to-bed heat transfer in supercritical water fluidized bed using CFD-DEM
    Zhang, Tianning
    Lu, Youjun
    PARTICUOLOGY, 2021, 56 : 113 - 123
  • [40] Hydrogen production by biomass gasification in a supercritical water fluidized bed reactor: A CFD-DEM study
    Zhao, Lixing
    Lu, Youjun
    JOURNAL OF SUPERCRITICAL FLUIDS, 2018, 131 : 26 - 36