Permafrost Degradation Risk Evaluation in the Qinghai-Tibet Plateau Under Climate Change Based on Machine Learning Models

被引:3
|
作者
Zhang, Mingyi [1 ,2 ]
Li, Renwei [1 ,2 ]
Pei, Wansheng [1 ,2 ]
Zhou, Yanqiao [1 ,2 ]
Li, Guanji [1 ,2 ]
Yang, Sheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
climate warming; permafrost degradation; mean annual ground temperature; active layer thickness; Qinghai-Tibet Plateau; THERMAL STATE; ACTIVE LAYER; AREA;
D O I
10.1029/2023JD039611
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Permafrost in the Qinghai-Tibet Plateau (QTP) is sensitive to climate warming, but the associated degradation risk still lacks accurate evaluation. To address this issue, machine learning (ML) models are established to simulate the mean annual ground temperature (MAGT) and active layer thickness (ALT), and climate data from shared socioeconomic pathways (SSPs) are prepared for evaluation in the future period. Based on the projections, permafrost is expected to remain relatively stable under the SSP1-2.6 scenario, and large-scale permafrost degradation will occur after the 2050s, resulting in area losses of 30.15% (SSP2-4.5), 58.96% (SSP3-7.0), and 65.97% (SSP5-8.5) in the 2090s relative to the modeling period (2006-2018). The average permafrost MAGT (ALT) is predicted to increase by 0.50 degrees C (59 cm), 0.67 degrees C (89 cm), and 0.79 degrees C (97 cm) in the 2090s with respect to the modeling period under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. Permafrost in the Qilian Mountains and Three Rivers Source region are fragile and vulnerable to degradation. In the future period, permafrost on the sunny slopes is more prone to degradation and the sunny-shade slope effect of permafrost distribution will be further enhanced under climate warming. The lower limit of permafrost distribution is expected to rise by about 100 m in the 2050s under the SSP2-4.5 scenario. These findings can provide valuable insights about future permafrost changes in the QTP. In the past decades, the Qinghai-Tibet Plateau (QTP) warmed at more than twice the global average, and permafrost degradation within this process has become widely acknowledged. To project the possible changes, a combination of climate data from global climate model, machine learning model, and permafrost field observation data were used, based on a comprehensive review of previous studies. The findings indicate that permafrost in the QTP is not expected to undergo significant degradation under the SSP1-2.6 scenario. However, noticeable permafrost degradation is projected to occur after the 2050s under the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, particularly in the Qilian Mountains and Three Rivers Source region. It is predicted that permafrost on sunny slopes is more susceptible to degradation under climate warming, and the permafrost area difference between the sunny and shade slopes will be further expanded. The mean annual air temperature of the QTP will rise by about 1.5 degrees C in the 2050s under the SSP2-4.5 scenario relative to the average between 2006 and 2018, which may lead to a 100 m rise on the low limit of permafrost distribution. Permafrost area of the Qinghai-Tibet Plateau (QTP) is expected to lose by 30.15% (SSP2-4.5) to 65.97% (SSP5-8.5) in the 2090sPermafrost in the Qilian Mountains and Three Rivers Source region are fragile and vulnerable to degradationThe lower limit of permafrost distribution in the QTP is forecasted to rise by about 100 m in the 2050s under the SSP2-4.5 scenario
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Risk evaluation of thaw settlement using machine learning models for the Wudaoliang-Tuotuohe region, Qinghai-Tibet Plateau
    Li, Renwei
    Zhang, Mingyi
    Pei, Wansheng
    Melnikov, Andrey
    Zhang, Ze
    Li, Guanji
    CATENA, 2023, 220
  • [32] Significant lake expansion has accelerated permafrost degradation on the Qinghai-Tibet Plateau
    Li, Qingpeng
    Liu, Wenhui
    Liu, Hairui
    Zhou, Guanghao
    Song, Xianteng
    Li, Qing
    Luo, Bingnan
    Song, Bangxu
    Zhang, Qi
    JOURNAL OF MOUNTAIN SCIENCE, 2024, 21 (01) : 68 - 83
  • [33] Effects of permafrost degradation on thermokarst lake hydrochemistry in the Qinghai-Tibet Plateau, China
    Gao, Zeyong
    Niu, Fujun
    Lin, Zhanju
    HYDROLOGICAL PROCESSES, 2020, 34 (26) : 5659 - 5673
  • [34] Significant lake expansion has accelerated permafrost degradation on the Qinghai-Tibet Plateau
    LI Qingpeng
    LIU Wenhui
    LIU Hairui
    ZHOU Guanghao
    SONG Xianteng
    LI Qing
    LUO Bingnan
    SONG Bangxu
    ZHANG Qi
    Journal of Mountain Science, 2024, 21 (01) : 68 - 83
  • [35] Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming
    Zhang, Guofei
    Nan, Zhuotong
    Zhao, Lin
    Liang, Yijia
    Cheng, Guodong
    EARTH AND PLANETARY SCIENCE LETTERS, 2021, 562
  • [36] Shift in potential pathogenic bacteria during permafrost degradation on the Qinghai-Tibet Plateau
    Zhang, Binglin
    Zhang, Baogui
    Xu, Yeteng
    Yan, Xiao
    Wang, Shijin
    Yang, Xinglou
    Yang, Hang
    Zhang, Gaosen
    Zhang, Wei
    Chen, Tuo
    Liu, Guangxiu
    Science of the Total Environment, 2024, 954
  • [37] Effect of permafrost degradation on grassland net primary productivity in Qinghai-Tibet Plateau
    Hu, Jianan
    Nan, Zhuotong
    Ji, Hailong
    Zhao, Shuping
    Ou, Minyue
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (10):
  • [38] The Impact of Permafrost Degradation on Lake Changes in the Endorheic Basin on the Qinghai-Tibet Plateau
    Liu, Wenhui
    Xie, Changwei
    Wang, Wu
    Yang, Guiqian
    Zhang, Yuxin
    Wu, Tonghua
    Liu, Guangyue
    Pang, Qiangqiang
    Zou, Defu
    Liu, Hairui
    WATER, 2020, 12 (05)
  • [39] Numerical modeling and prediction of future response of permafrost to different climate change scenarios on the Qinghai-Tibet Plateau
    Zhang, Wenjie
    Ren, Zhoupeng
    Yao, Ling
    Zhou, Chenghu
    Zhu, Yunqiang
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016, 9 (05) : 442 - 456
  • [40] Variation characteristics of high flows and their responses to climate change in permafrost regions on the Qinghai-Tibet Plateau, China
    Wang, Zhiwei
    Sun, Shouqin
    Song, Chunlin
    Wang, Genxu
    Lin, Shan
    Ye, Silu
    JOURNAL OF CLEANER PRODUCTION, 2022, 376