Optimizing machine learning for space weather forecasting and event classification using modified metaheuristics

被引:1
|
作者
Jovanovic, Luka [1 ]
Bacanin, Nebojsa [1 ]
Simic, Vladimir [2 ,3 ]
Mani, Joseph [4 ]
Zivkovic, Miodrag [1 ]
Sarac, Marko [1 ]
机构
[1] Singidunum Univ, Danijelova 32, Belgrade 11000, Serbia
[2] Univ Belgrade, Fac Transport & Traff Engn, Vojvode Stepe 305, Belgrade 11010, Serbia
[3] Yuan Ze Univ, Coll Engn, Dept Ind Engn & Management, Yuandong Rd, Taoyuan City 320315, Taiwan
[4] Modern Coll Business & Sci, 3 Bawshar St, Muscat 133, Oman
关键词
Solar flare; Sunspot; Optimization; Forecasting; Artificial intelligence; SWARM INTELLIGENCE; SOLAR;
D O I
10.1007/s00500-023-09496-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Space weather profoundly impacts Earth and its surrounding space environment, necessitating improved prediction to safeguard critical infrastructure such as communication and satellites. Solar flares can disrupt communications and pose radiation risks to airline passengers. While traditional methods offer rough estimates of solar activity trends, the potential of artificial intelligence in this domain warrants exploration. This study addresses this research gap by evaluating the performance of recurrent neural networks (RNNs) for sunspot forecasting and assessing the suitability of extreme gradient boosting (XGBoost) for solar event classification. Two publicly available datasets serve as the foundation for this research. To enhance algorithm performance through optimal hyperparameter selection, metaheuristic optimizers are employed. A unique contribution is the introduction of a modified particle swarm optimization algorithm, specifically tailored to the study's needs. Two experiments were conducted: In the first, RNNs predicted sunspot occurrence up to three steps ahead. The best-performing model, optimized using the introduced modified metaheuristic, achieved an impressive R-2 value of 0.840448, surpassing competing algorithms. In the second experiment, XGBoost models assessed solar flare severity, with the top model again optimized by the modified metaheuristic, achieving an accuracy of 0.981565. This novel approach highlights the potential for enhancing solar activity forecasting techniques and offers valuable insights into feature impacts on model decisions, thereby advancing our understanding of space weather.
引用
收藏
页码:6383 / 6402
页数:20
相关论文
共 50 条
  • [41] Monthly and seasonal hydrological drought forecasting using multiple extreme learning machine models
    Wang, Guo Chun
    Zhang, Qian
    Band, Shahab S.
    Dehghani, Majid
    Chau, Kwok Wing
    Tho, Quan Thanh
    Zhu, Senlin
    Samadianfard, Saeed
    Mosavi, Amir
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2022, 16 (01) : 1364 - 1381
  • [42] Air Temperature Forecasting Using Machine Learning Techniques: A Review
    Cifuentes, Jenny
    Marulanda, Geovanny
    Bello, Antonio
    Reneses, Javier
    ENERGIES, 2020, 13 (16)
  • [43] A Hybrid Approach of Solar Power Forecasting Using Machine Learning
    Bajpai, Arpit
    Duchon, Markus
    2019 3RD INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC 2019), 2019, : 108 - 113
  • [44] Optimizing MPI Runtime Parameter Settings by Using Machine Learning
    Pellegrini, Simone
    Wang, Jie
    Fahringer, Thomas
    Moritsch, Hans
    RECENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING INTERFACE, PROCEEDINGS, 2009, 5759 : 196 - 206
  • [45] Forecasting ESG Stock Indices Using a Machine Learning Approach
    Suprihadi, Eddy
    Danila, Nevi
    GLOBAL BUSINESS REVIEW, 2024,
  • [46] Forecasting voting behaviour using machine learning - Poland in transition
    Szkatula, G
    Holubiec, J
    Wagner, D
    ANNALS OF OPERATIONS RESEARCH, 2000, 97 (1-4) : 31 - 41
  • [47] Enhancing Air Quality Forecasting Using Machine Learning Techniques
    Shahbazi, Zeinab
    Shahbazi, Zahra
    Nowaczyk, Slawomir
    IEEE ACCESS, 2024, 12 : 197290 - 197299
  • [48] Forecasting voting behaviour using machine learning – Poland in transition
    G. Szkatuła
    J. Hołubiec
    D. Wagner
    Annals of Operations Research, 2000, 97 : 31 - 41
  • [49] Forecasting of meteorological drought using ensemble and machine learning models
    Pande, Chaitanya Baliram
    Sidek, Lariyah Mohd
    Varade, Abhay M.
    Elkhrachy, Ismail
    Radwan, Neyara
    Tolche, Abebe Debele
    Elbeltagi, Ahmed
    ENVIRONMENTAL SCIENCES EUROPE, 2024, 36 (01)
  • [50] Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm
    Kim, Jee-Heon
    Seong, Nam-Chul
    Choi, Wonchang
    ENERGIES, 2019, 12 (15)