Coarse-Grained Molecular Dynamics Modeling of Polyvinyl Chloride: Solvent Interactions, Mechanical Behavior, and Dehydrochlorination Effects

被引:2
|
作者
Olowookere, Feranmi V. [1 ]
Barbosa, Gabriel D. [1 ]
Turner, C. Heath [1 ]
机构
[1] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
POLY VINYL-CHLORIDE; POLY(VINYL CHLORIDE); FORCE-FIELD; PVC; POLYETHYLENE; DISTRIBUTIONS; PLASTICIZER; TEMPERATURE; SIMULATION; PREDICTION;
D O I
10.1021/acs.macromol.3c02211
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, we develop and validate coarse-grained (CG) models for simulating the intrinsic thermophysical properties of polyvinyl chloride (PVC) and dehydrochlorinated PVC (DHPVC). The CG models are generated by using fuzzy self-tuning particle swarm optimization and iterative Boltzmann inversion, and they provide results consistent with the all-atom PVC model and with available experimental data. Several properties are evaluated within different solvents-acetone, ethyl acetate, water, and tetrahydrofuran-including bond lengths, angles, dihedral distributions, radius of gyration (R-g), end-to-end distance (R), radial distribution functions (RDFs), surface area, and potential of mean force. Additionally, CG models are validated by benchmarking mechanical properties in melt (MELT) systems, such as the stress-strain relationship and glass transition temperature. The CG model for DHPVC reliably predicts the physical changes observed after dehydrochlorination in ETA and MELT, by accurately depicting changes in dihedral distributions, polymer chain planarity, R-g, R, RDF variations, and the consequential reduction in melt viscosity. These validated CG models enable computationally efficient simulations of PVC and DHPVC interactions in various solvents and melts.
引用
收藏
页码:10006 / 10015
页数:10
相关论文
共 50 条
  • [31] A coarse-grained molecular dynamics study on the mechanical behavior of carbon nanotubes reinforced vulcanized natural rubber composites
    Cui, Jianzheng
    Zeng, Fanlin
    Wang, Youshan
    POLYMER COMPOSITES, 2023, 44 (11) : 7752 - 7767
  • [32] Peptide Nanopores and Lipid Bilayers: Interactions by Coarse-Grained Molecular-Dynamics Simulations
    Klingelhoefer, Jochen W.
    Carpenter, Timothy
    Sansom, Mark S. P.
    BIOPHYSICAL JOURNAL, 2009, 96 (09) : 3519 - 3528
  • [33] Interactions between C60 and vesicles: a coarse-grained molecular dynamics simulation
    Zhang, Jianhua
    Zhao, Xiaowei
    Liu, Qing Huo
    RSC ADVANCES, 2016, 6 (93): : 90388 - 90396
  • [34] Coarse-grained molecular dynamics simulations of polymerization with forward and backward reactions
    Krajniak, Jakub
    Zhang, Zidan
    Pandiyan, Sudharsan
    Nies, Eric
    Samaey, Giovanni
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (22) : 1764 - 1778
  • [35] Introduction of Steered Molecular Dynamics into UNRES Coarse-Grained Simulations Package
    Sieradzan, Adam K.
    Jakubowski, Rafal
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2017, 38 (08) : 553 - 562
  • [36] A multilayer coarse-grained molecular dynamics model for mechanical analysis of mesoscale graphene structures
    Liu, Sihan
    Duan, Ke
    Li, Li
    Wang, Xuelin
    Hu, Yujin
    CARBON, 2021, 178 : 528 - 539
  • [37] Modeling and evaluation of sintered microstructure and its properties for rSOFC fuel electrodes by coarse-grained molecular dynamics
    Yang, Chao
    Li, Ping
    Guo, Ran
    Miao, He
    Yang, Xiaoying
    Wu, Yu
    Wang, Fang
    Zhang, Zhonggang
    Yuan, Jinliang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 891
  • [38] Modeling the Self-Assembly of Bolaamphiphiles under Nanoconfinement by Coarse-Grained Molecular Dynamics
    Wu, Qing-Yan
    Tian, Wen-de
    Ma, Yu-qiang
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (38): : 8984 - 8990
  • [39] Improvements and new functionalities of UNRES server for coarse-grained modeling of protein structure, dynamics, and interactions
    Slusarz, Rafal
    Lubecka, Emilia A.
    Czaplewski, Cezary
    Liwo, Adam
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [40] Coarse-grained Molecular Dynamics Simulation Study of Nanorheology and Nanotribology
    Morita, Hiroshi
    Nakajima, Ken
    Nishi, Toshio
    Doi, Masao
    NIHON REOROJI GAKKAISHI, 2009, 37 (02) : 105 - 111