Coarse-Grained Molecular Dynamics Modeling of Polyvinyl Chloride: Solvent Interactions, Mechanical Behavior, and Dehydrochlorination Effects

被引:2
|
作者
Olowookere, Feranmi V. [1 ]
Barbosa, Gabriel D. [1 ]
Turner, C. Heath [1 ]
机构
[1] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
POLY VINYL-CHLORIDE; POLY(VINYL CHLORIDE); FORCE-FIELD; PVC; POLYETHYLENE; DISTRIBUTIONS; PLASTICIZER; TEMPERATURE; SIMULATION; PREDICTION;
D O I
10.1021/acs.macromol.3c02211
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, we develop and validate coarse-grained (CG) models for simulating the intrinsic thermophysical properties of polyvinyl chloride (PVC) and dehydrochlorinated PVC (DHPVC). The CG models are generated by using fuzzy self-tuning particle swarm optimization and iterative Boltzmann inversion, and they provide results consistent with the all-atom PVC model and with available experimental data. Several properties are evaluated within different solvents-acetone, ethyl acetate, water, and tetrahydrofuran-including bond lengths, angles, dihedral distributions, radius of gyration (R-g), end-to-end distance (R), radial distribution functions (RDFs), surface area, and potential of mean force. Additionally, CG models are validated by benchmarking mechanical properties in melt (MELT) systems, such as the stress-strain relationship and glass transition temperature. The CG model for DHPVC reliably predicts the physical changes observed after dehydrochlorination in ETA and MELT, by accurately depicting changes in dihedral distributions, polymer chain planarity, R-g, R, RDF variations, and the consequential reduction in melt viscosity. These validated CG models enable computationally efficient simulations of PVC and DHPVC interactions in various solvents and melts.
引用
收藏
页码:10006 / 10015
页数:10
相关论文
共 50 条
  • [21] Coarse-grained (hybrid) integrative modeling of biomolecular interactions
    Roel-Touris, Jorge
    Bonvin, Alexandre M. J. J.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 1182 - 1190
  • [22] Modeling for Heterogeneous Oxidative Aging of Polymers Using Coarse-Grained Molecular Dynamics
    Ishida, Takato
    Doi, Yuya
    Uneyama, Takashi
    Masubuchi, Yuichi
    MACROMOLECULES, 2023, 56 (21) : 8474 - 8483
  • [23] Coarse-Grained Modeling and Molecular Dynamics Simulations of Ca2+-Calmodulin
    Nde, Jules
    Zhang, Pengzhi
    Ezerski, Jacob C.
    Lu, Wei
    Knapp, Kaitlin
    Wolynes, Peter G.
    Cheung, Margaret S.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
  • [24] Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing
    Peters, Andrew J.
    Lawson, Richard A.
    Nation, Benjamin D.
    Ludovice, Peter J.
    Henderson, Clifford L.
    ALTERNATIVE LITHOGRAPHIC TECHNOLOGIES VII, 2015, 9423
  • [25] Modeling elastic properties of polystyrene through coarse-grained molecular dynamics simulations
    Beltukov, Yaroslav M.
    Gula, Igor
    Samsonov, Alexander M.
    Solov'yov, Ilia A.
    EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (10):
  • [26] Coarse-grained molecular dynamics modeling of DNA-carbon nanotube complexes
    Zou, Jian
    Liang, Wentao
    Zhang, Sulin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 968 - 985
  • [27] A coarse-grained model for mechanical behavior of phosphorene sheets
    Liu, Ning
    Becton, Matthew
    Zhang, Liuyang
    Chen, Heng
    Zeng, Xiaowei
    Pidaparti, Ramana
    Wang, Xianqiao
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (04) : 1884 - 1894
  • [28] A coarse-grained molecular dynamics model for crystalline solids
    Li, Xiantao
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (8-9) : 986 - 997
  • [29] Molecular Dynamics Trajectory Compression with a Coarse-Grained Model
    Cheng, Yi-Ming
    Gopal, Srinivasa Murthy
    Law, Sean M.
    Feig, Michael
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (02) : 476 - 486
  • [30] Applying a generic and fast coarse-grained molecular dynamics model to extensively study the mechanical behavior of polymer nanocomposites
    Ries, Maximilian
    Seibert, Jakob
    Steinmann, Paul
    Pfaller, Sebastian
    EXPRESS POLYMER LETTERS, 2022, 16 (12): : 1304 - 1321