Inverse scattering transform for the integrable fractional derivative nonlinear Schrödinger equation

被引:7
作者
An, Ling [1 ]
Ling, Liming [1 ]
Zhang, Xiaoen [1 ]
机构
[1] South China Univ Technol, Sch Math, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional derivative nonlinear Schrodinger; equation; Recursion operator; Inverse scattering transform; FractionalN-soliton solution; Fractional rational solution; SCHRODINGER-EQUATION; WAVES; PROPAGATION; CALCULUS; PARALLEL;
D O I
10.1016/j.physd.2023.133888
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose an integrable fractional derivative nonlinear Schrodinger (fDNLS) equation with the aid of the completeness of the squared eigenfunctions for the Kaup-Newell system. Then we further construct an appropriate Riemann-Hilbert problem, from which we obtain a reconstruction formula of the solution of the fDNLS equation. The fractional N-soliton solution is carried out explicitly by means of determinants and the fractional one-soliton solution is verified rigorously. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 47 条
[1]   Fractional integrable and related discrete nonlinear Schrodinger equations [J].
Ablowitz, Mark J. ;
Been, Joel B. ;
Carr, Lincoln D. .
PHYSICS LETTERS A, 2022, 452
[2]   Integrable fractional modified Korteweg-deVries, sine-Gordon, and sinh-Gordon equations [J].
Ablowitz, Mark J. ;
Been, Joel B. ;
Carr, Lincoln D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (38)
[3]   Fractional Integrable Nonlinear Soliton Equations [J].
Ablowitz, Mark J. ;
Been, Joel B. ;
Carr, Lincoln D. .
PHYSICAL REVIEW LETTERS, 2022, 128 (18)
[4]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[5]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[6]  
Agrawal GP, 2008, APPLICATIONS OF NONLINEAR FIBER OPTICS, 2ND EDITION, P1
[7]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[8]   High-accuracy power series solutions with arbitrarily large radius of convergence for the fractional nonlinear Schrodinger-type equations [J].
Al Khawaja, U. ;
Al-Refai, M. ;
Shchedrin, Gavriil ;
Carr, Lincoln D. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (23)
[9]   Nondegenerate solitons in the integrable fractional coupled Hirota equation [J].
An, Ling ;
Ling, Liming ;
Zhang, Xiaoen .
PHYSICS LETTERS A, 2023, 460
[10]   Darboux transformations and solutions of nonlocal Hirota and Maxwell-Bloch equations [J].
An, Ling ;
Li, Chuanzhong ;
Zhang, Lixiang .
STUDIES IN APPLIED MATHEMATICS, 2021, 147 (01) :60-83