Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression

被引:2
|
作者
Chang, Chi-Hsien [1 ]
Chiang, Tu-Chin [1 ]
Hsu, Tzu-Hao [1 ]
Chuang, Ting-Shuo [1 ]
Fang, Wen-Zhong [1 ]
Yu, Tian-Li [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taiwan Evolutionary Intelligence LAB, Taipei, Taiwan
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
关键词
Genetic programming; Symbolic regression; Taylor polynomial;
D O I
10.1145/3583133.3590591
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unlike most research of symbolic regression with genetic programming (GP) concerning black-box optimization, this paper focuses on the scenario where the underlying function is available, but due to limited computational resources or product imperfection, the function needs to be approximated with simplicity to fit measured data. Taylor polynomial (TP) is commonly used in such scenario; however, its performance drops drastically away from the expansion point. On the other hand, solely using GP does not utilize the knowledge of the underlying function, even though possibly inaccurate. This paper proposes using GP as a TP enhancer, namely TPE-GP, to combine the advantages from TP and GP. Specifically, TPE-GP utilizes infinite-order operators to compensate the power of TP with finite order. Empirically, on functions that are expressible by TP, TP outperformed both gplearn and TPE-GP as expected, while TPE-GP outperformed gplearn due to the use of TP. On functions that are not expressible by TP but expressible by the function set (FS), TPE-GP was competitive with gplearn while both outperformed TP. Finally, on functions that are not expressible by both TP and FS, TPE-GP outperformed both TP and gplearn, indicating the hybrid did achieve the synergy effect from TP and GP.
引用
收藏
页码:543 / 546
页数:4
相关论文
共 50 条
  • [31] Parallel implementation of a genetic-programming based tool for symbolic regression
    Salhi, A
    Glaser, H
    De Roure, D
    INFORMATION PROCESSING LETTERS, 1998, 66 (06) : 299 - 307
  • [32] Genetic programming performance prediction and its application for symbolic regression problems
    Astarabadi, Samaneh Sadat Mousavi
    Ebadzadeh, Mohammad Mehdi
    INFORMATION SCIENCES, 2019, 502 : 418 - 433
  • [33] Active Learning Informs Symbolic Regression Model Development in Genetic Programming
    Haut, Nathan
    Punch, Bill
    Banzhaf, Wolfgang
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 587 - 590
  • [34] Evolvability Degeneration in Multi-Objective Genetic Programming for Symbolic Regression
    Liu, Dazhuang
    Virgolin, Marco
    Alderliesten, Tanja
    Bosman, Peter A. N.
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 973 - 981
  • [35] Denoising Autoencoder Genetic Programming for Real-World Symbolic Regression
    Wittenberg, David
    Rothlauf, Franz
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 612 - 614
  • [36] Improving Generalisation of Genetic Programming for Symbolic Regression with Structural Risk Minimisation
    Chen, Qi
    Xue, Bing
    Shang, Lin
    Zhang, Mengjie
    GECCO'16: PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2016, : 709 - 716
  • [37] Adaptive Weighted Splines - A New Representation to Genetic Programming for Symbolic Regression
    Raymond, Christian
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    GECCO'20: PROCEEDINGS OF THE 2020 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2020, : 1003 - 1011
  • [38] Genetic Programming for Instance Transfer Learning in Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (01) : 25 - 38
  • [39] Investigation of Linear Genetic Programming Techniques for Symbolic Regression
    Dal Piccol Sotto, Leo Francoso
    de Melo, Vinicius Veloso
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 146 - 151
  • [40] Symbolic Regression via Control Variable Genetic Programming
    Jiang, Nan
    Xue, Yexiang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT IV, 2023, 14172 : 178 - 195