Taylor Polynomial Enhancer using Genetic Programming for Symbolic Regression

被引:2
|
作者
Chang, Chi-Hsien [1 ]
Chiang, Tu-Chin [1 ]
Hsu, Tzu-Hao [1 ]
Chuang, Ting-Shuo [1 ]
Fang, Wen-Zhong [1 ]
Yu, Tian-Li [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taiwan Evolutionary Intelligence LAB, Taipei, Taiwan
来源
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION | 2023年
关键词
Genetic programming; Symbolic regression; Taylor polynomial;
D O I
10.1145/3583133.3590591
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unlike most research of symbolic regression with genetic programming (GP) concerning black-box optimization, this paper focuses on the scenario where the underlying function is available, but due to limited computational resources or product imperfection, the function needs to be approximated with simplicity to fit measured data. Taylor polynomial (TP) is commonly used in such scenario; however, its performance drops drastically away from the expansion point. On the other hand, solely using GP does not utilize the knowledge of the underlying function, even though possibly inaccurate. This paper proposes using GP as a TP enhancer, namely TPE-GP, to combine the advantages from TP and GP. Specifically, TPE-GP utilizes infinite-order operators to compensate the power of TP with finite order. Empirically, on functions that are expressible by TP, TP outperformed both gplearn and TPE-GP as expected, while TPE-GP outperformed gplearn due to the use of TP. On functions that are not expressible by TP but expressible by the function set (FS), TPE-GP was competitive with gplearn while both outperformed TP. Finally, on functions that are not expressible by both TP and FS, TPE-GP outperformed both TP and gplearn, indicating the hybrid did achieve the synergy effect from TP and GP.
引用
收藏
页码:543 / 546
页数:4
相关论文
共 50 条
  • [21] Semantic Linear Genetic Programming for Symbolic Regression
    Huang, Zhixing
    Mei, Yi
    Zhong, Jinghui
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (02) : 1321 - 1334
  • [22] Combining Conformal Prediction and Genetic Programming for Symbolic Interval Regression
    Pham Thi Thuong
    Nguyen Xuan Hoai
    Yao, Xin
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 1001 - 1008
  • [23] Using genetic programming for symbolic regression to detect climate change signatures
    Ricketts, J. H.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 691 - 697
  • [24] Instance based Transfer Learning for Genetic Programming for Symbolic Regression
    Chen, Qi
    Xue, Bing
    Zhang, Mengjie
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 3006 - 3013
  • [25] A Building Block Conservation and Extension Mechanism for Improved Performance in Polynomial Symbolic Regression Tree-based Genetic Programming
    Ragalo, Anisa W.
    Pillay, Nelishia
    PROCEEDINGS OF THE 2012 FOURTH WORLD CONGRESS ON NATURE AND BIOLOGICALLY INSPIRED COMPUTING (NABIC), 2012, : 123 - 129
  • [26] Small Solutions for Real-World Symbolic Regression Using Denoising Autoencoder Genetic Programming
    Wittenberg, David
    Rothlauf, Franz
    GENETIC PROGRAMMING, EUROGP 2023, 2023, 13986 : 101 - 116
  • [27] Is Human Walking a Network Medicine Problem? An Analysis Using Symbolic Regression Models with Genetic Programming
    Dasgupta, Pritika
    Hughes, James Alexander
    Daley, Mark
    Sejdic, Ervin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 206
  • [28] A Comparative Study on the Numerical Performance of Kaizen Programming and Genetic Programming for Symbolic Regression Problems
    Ferreira, Jimena
    Ines Torres, Ana
    Pedemonte, Martin
    2019 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2019, : 202 - 207
  • [29] GPTIPS: An Open Source Genetic Programming Toolbox For Multigene Symbolic Regression
    Searson, Dominic P.
    Leahy, David E.
    Willis, Mark J.
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 77 - +
  • [30] Parsimony Measures in Multi-objective Genetic Programming for Symbolic Regression
    Burlacu, Bogdan
    Kronberger, Gabriel
    Kommenda, Michael
    Affenzeller, Michael
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, : 338 - 339