Maximization of the spectral radius of block graphs with a given dissociation number

被引:3
作者
Das, Joyentanuj [1 ]
Mohanty, Sumit [2 ]
机构
[1] Natl Sun Yat sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] Indian Inst Management Ranchi, Nayasarai Rd, Ranchi 835303, Jharkhand, India
关键词
Spectral radius; Dissociation number; Complete graphs; Bounds; Block graphs; TREES;
D O I
10.1016/j.amc.2023.128424
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A connected graph is called a block graph if each of its blocks is a complete graph. Let BI(k,phi) be the class of block graphs on k vertices with given dissociation number phi. In this article, we have shown the existence and uniqueness of a block graph B-k,B-phi in BI(k,phi) that maximizes the spectral radius rho(G) among all graphs G in BI(k,phi). Furthermore, we also provide bounds on rho(B-k,(phi)).
引用
收藏
页数:15
相关论文
共 23 条
  • [1] Bapat R.B., 2014, Graphs and matrices, V2nd
  • [2] Biggs N., 1993, ALGEBRAIC GRAPH THEO, V2nd
  • [3] On the vertex k-path cover
    Bresar, Bostjan
    Jakovac, Marko
    Katrenic, Jan
    Semanisin, Gabriel
    Taranenko, Andrej
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 1943 - 1949
  • [4] Minimum k-path vertex cover
    Bresar, Bostjan
    Kardos, Frantisek
    Katrenic, Jan
    Semanisin, Gabriel
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (12) : 1189 - 1195
  • [5] ON THE SPECTRAL-RADIUS OF COMPLEMENTARY ACYCLIC MATRICES OF ZEROS AND ONES
    BRUALDI, RA
    SOLHEID, ES
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (02): : 265 - 272
  • [6] On the spectral radius of block graphs with prescribed independence number α
    Conde, Cristian M.
    Dratman, Ezequiel
    Grippo, Luciano N.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 111 - 124
  • [7] On the spectral radius of bi-block graphs with given independence number α
    Das, Joyentanuj
    Mohanty, Sumit
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 402
  • [8] Some new bounds on the spectral radius of graphs
    Das, KC
    Kumar, P
    [J]. DISCRETE MATHEMATICS, 2004, 281 (1-3) : 149 - 161
  • [9] Feng LH, 2011, UTILITAS MATHEMATICA, V84, P33
  • [10] On the spectral radius of trees with fixed diameter
    Guo, JM
    Shao, JY
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 413 (01) : 131 - 147