Improved UNet with Attention for Medical Image Segmentation

被引:22
|
作者
AL Qurri, Ahmed [1 ]
Almekkawy, Mohamed [1 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA
关键词
UNet; UNet plus plus; Transformer; CNN; attention; medical imaging; ultrasound; CT scan; U-NET; PLUS PLUS; ARCHITECTURE; TRANSFORMER;
D O I
10.3390/s23208589
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Medical image segmentation is crucial for medical image processing and the development of computer-aided diagnostics. In recent years, deep Convolutional Neural Networks (CNNs) have been widely adopted for medical image segmentation and have achieved significant success. UNet, which is based on CNNs, is the mainstream method used for medical image segmentation. However, its performance suffers owing to its inability to capture long-range dependencies. Transformers were initially designed for Natural Language Processing (NLP), and sequence-to-sequence applications have demonstrated the ability to capture long-range dependencies. However, their abilities to acquire local information are limited. Hybrid architectures of CNNs and Transformer, such as TransUNet, have been proposed to benefit from Transformer's long-range dependencies and CNNs' low-level details. Nevertheless, automatic medical image segmentation remains a challenging task due to factors such as blurred boundaries, the low-contrast tissue environment, and in the context of ultrasound, issues like speckle noise and attenuation. In this paper, we propose a new model that combines the strengths of both CNNs and Transformer, with network architectural improvements designed to enrich the feature representation captured by the skip connections and the decoder. To this end, we devised a new attention module called Three-Level Attention (TLA). This module is composed of an Attention Gate (AG), channel attention, and spatial normalization mechanism. The AG preserves structural information, whereas channel attention helps to model the interdependencies between channels. Spatial normalization employs the spatial coefficient of the Transformer to improve spatial attention akin to TransNorm. To further improve the skip connection and reduce the semantic gap, skip connections between the encoder and decoder were redesigned in a manner similar to that of the UNet++ dense connection. Moreover, deep supervision using a side-output channel was introduced, analogous to BASNet, which was originally used for saliency predictions. Two datasets from different modalities, a CT scan dataset and an ultrasound dataset, were used to evaluate the proposed UNet architecture. The experimental results showed that our model consistently improved the prediction performance of the UNet across different datasets.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] DSKCA-UNet: Dynamic selective kernel channel attention for medical image segmentation
    Shen, Longfeng
    Wang, Qiong
    Zhang, Yingjie
    Qin, Fenglan
    Jin, Hengjun
    Zhao, Wei
    MEDICINE, 2023, 102 (39) : E35328
  • [2] DI-Unet: Dimensional interaction self-attention for medical image segmentation
    Wu, Yanlin
    Wang, Guanglei
    Wang, Zhongyang
    Wang, Hongrui
    Li, Yan
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [3] TransCUNet: UNet cross fused transformer for medical image segmentation
    Jiang, Shen
    Li, Jinjiang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [4] Multiresolution Aggregation Transformer UNet Based on Multiscale Input and Coordinate Attention for Medical Image Segmentation
    Chen, Shaolong
    Qiu, Changzhen
    Yang, Weiping
    Zhang, Zhiyong
    SENSORS, 2022, 22 (10)
  • [5] Enhancing medical image segmentation with MA-UNet: a multi-scale attention framework
    Li, Hongzhi
    Ren, Zhanghao
    Zhu, Guoqing
    Liang, Yaoju
    Cui, Han
    Wang, Chaozeyu
    Wang, Jiaxi
    VISUAL COMPUTER, 2025, : 6103 - 6120
  • [6] GSAC-UFormer: Groupwise Self-Attention Convolutional Transformer-Based UNet for Medical Image Segmentation
    Garbaz, Anass
    Oukdach, Yassine
    Charfi, Said
    El Ansari, Mohamed
    Koutti, Lahcen
    Salihoun, Mouna
    COGNITIVE COMPUTATION, 2025, 17 (02)
  • [7] RFE-UNet: Remote Feature Exploration with Local Learning for Medical Image Segmentation
    Zhong, Xiuxian
    Xu, Lianghui
    Li, Chaoqun
    An, Lijing
    Wang, Liejun
    SENSORS, 2023, 23 (13)
  • [8] RM-UNet: UNet-like Mamba with rotational SSM module for medical image segmentation
    Tang, Hao
    Huang, Guoheng
    Cheng, Lianglun
    Yuan, Xiaochen
    Tao, Qi
    Chen, Xuhang
    Zhong, Guo
    Yang, Xiaohui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8427 - 8443
  • [9] CI-UNet: melding convnext and cross-dimensional attention for robust medical image segmentation
    Zhang, Zhuo
    Wen, Yihan
    Zhang, Xiaochen
    Ma, Quanfeng
    BIOMEDICAL ENGINEERING LETTERS, 2024, 14 (02) : 341 - 353
  • [10] Segmentation of brain tumor MRI image based on improved attention module Unet network
    Lei Zhang
    Chaofeng Lan
    Lirong Fu
    Xiuhuan Mao
    Meng Zhang
    Signal, Image and Video Processing, 2023, 17 : 2277 - 2285