Similarity network fusion to identify phenotypes of small-for-gestational-age fetuses

被引:2
|
作者
Miranda, Jezid [1 ,2 ,3 ,4 ]
Paules, Cristina [1 ,2 ,3 ,5 ]
Noell, Guillaume [6 ]
Youssef, Lina [1 ,2 ,3 ]
Paternina-Caicedo, Angel [7 ]
Crovetto, Francesca [1 ,2 ,3 ]
Canellas, Nicolau [8 ]
Garcia-Martin, Maria L. [9 ]
Amigo, Nuria [10 ]
Eixarch, Elisenda [1 ,2 ,3 ]
Faner, Rosa [6 ]
Figueras, Francesc [1 ,2 ,3 ]
Simos, Rui, V [1 ,2 ,3 ,11 ]
Crispi, Fatima [1 ,2 ,3 ]
Gratacos, Eduard [1 ,2 ,3 ]
机构
[1] Univ Barcelona, IDIBAPS, BCNatal Barcelona Ctr Maternal Fetal & Neonatal Me, Hosp Clin, Barcelona, Spain
[2] Univ Barcelona, Hosp St Joan Deu, IDIBAPS, Barcelona, Spain
[3] Ctr Biomed Res Rare Dis CIBER ER, Barcelona, Spain
[4] Univ Cartagena, Fac Med, Dept Obstet & Gynecol, Cartagena De Indias, Colombia
[5] Univ Lozano Blesa, Aragon Inst Hlth Res IIS Aragon, Obstet Dept, Hosp Clin, Zaragoza, Spain
[6] Univ Barcelona, Ctr Biomed Res Resp Dis CIBERES, Biomed Dept, IDIBAPS, Barcelona, Spain
[7] Univ Sinu, Fac Med, Cartagena De Indias, Colombia
[8] Univ Rovira I Virgili, Biomed Res Ctr Diabet & Associated Metab Disorders, Metabol Platform, IISPV,DEEiA, Tarragona, Spain
[9] Univ Malaga, Andalusian Ctr Nanomed & Biotechnol, BIONAND, Junta Andalucia, Malaga, Spain
[10] Biosfer Teslab, Reus, Spain
[11] Univ Porto, Inst Res & Innovat Hlth i3S, Porto, Portugal
关键词
FETAL-GROWTH RESTRICTION; EARLY-ONSET; NATRIURETIC PEPTIDE; NMR-SPECTROSCOPY; TERM; MANAGEMENT; DOPPLER; PREECLAMPSIA; CONSEQUENCES; PREGNANCY;
D O I
10.1016/j.isci.2023.107620
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fetal growth restriction (FGR) affects 5-10% of pregnancies, is the largest contributor to fetal death, and can have long-term consequences for the child. Implementation of a standard clinical classification system is hampered by the multiphenotypic spectrum of small fetuses with substantial differences in perinatal risks. Machine learning and multiomics data can potentially revolutionize clinical decision-making in FGR by identifying new phenotypes. Herein, we describe a cluster analysis of FGR based on an unbiased machine-learning method. Our results confirm the existence of two subtypes of human FGR with distinct molecular and clinical features based on multiomic analysis. In addition, we demonstrated that clusters generated by machine learning significantly outperform single data subtype analysis and biologically support the current clinical classification in predicting adverse maternal and neonatal outcomes. Our approach can aid in the refinement of clinical classification systems for FGR supported by molecular and clinical signatures.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] GCK-MODY in pregnancy: A pregnant woman with diabetes and a small-for-gestational-age fetus
    Yau, Tiffany Tse Ling
    Yu, Stephanie Cheuk Yin
    Cheng, Jenny Yeuk-Ki
    Kwok, Jeffrey Sung Shing
    Ma, Ronald Ching Wan
    CLINICAL CASE REPORTS, 2022, 10 (12):
  • [42] Prediction by uterine artery Doppler screening of small-for-gestational-age neonates at 19-24 weeks' gestation
    Tai, Y. -y.
    Lee, C. -n.
    Juan, H. -c.
    Lin, M. -w.
    Liao, J. -c.
    Li, H. -y.
    Lin, S. -y.
    Poon, L. C.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2024, 63 (02) : 222 - 229
  • [43] Impact of the detection of small for gestational age fetuses on the neonatal prognosis
    Peyronnet, V
    Sibiude, J.
    Mandelbrot, L.
    Kayem, G.
    GYNECOLOGIE OBSTETRIQUE FERTILITE & SENOLOGIE, 2018, 46 (02): : 71 - 77
  • [44] Comparing the relation between ultrasound-estimated fetal weight and birthweight in cohort of small-for-gestational-age fetuses
    Stephens, Katie
    Al-Memar, Maya
    Beattie-Jones, Suzanne
    Dhanjal, Mandish
    Mappouridou, Stephanie
    Thorne, Elizabeth
    Lees, Christoph
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2019, 98 (11) : 1435 - 1441
  • [45] Changes in spectral power of fetal heart rate variability in small-for-gestational-age fetuses are associated with fetal sex
    Kwon, Ji Young
    Park, In Yang
    Lim, Jongil
    Shin, Jong Chul
    EARLY HUMAN DEVELOPMENT, 2014, 90 (01) : 9 - 13
  • [46] Neonatal nucleated red blood cell counts in small-for-gestational-age fetuses:: relationship to fetoplacental Doppler studies
    Axt-Fliedner, R
    Ertan, K
    Hendrik, HJ
    Wrobel, M
    König, J
    Mink, D
    Schmidt, W
    JOURNAL OF PERINATAL MEDICINE, 2000, 28 (05) : 355 - 362
  • [47] Characteristics associated with antenatally unidentified small-for-gestational-age fetuses: prospective cohort study nested within DESiGN randomized controlled trial
    Relph, S.
    Vieira, M. C.
    Copas, A.
    Alagna, A.
    Page, L.
    Winsloe, C.
    Shennan, A.
    Briley, A.
    Johnson, M.
    Lees, C.
    Lawlor, D. A.
    Sandall, J.
    Khalil, A.
    Pasupathy, D.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2023, 61 (03) : 356 - 366
  • [48] Outcome of small-for-gestational-age fetuses according to umbilical artery Doppler: Is there any yield from additional middle cerebral artery Doppler?
    Nanthakomon, Tongta
    Uerpairojkit, Boonchai
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2010, 23 (08) : 900 - 905
  • [49] Growth trajectory of preterm small-for-gestational-age neonates
    Molony, Claire L.
    Hiscock, Richard
    Kaufman, Jonathan
    Keenan, Emerson
    Hastie, Roxanne
    Brownfoot, Fiona C.
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2022, 35 (25) : 8400 - 8406
  • [50] Midtrimester Ultrasound Predictors of Small-for-Gestational-Age Neonates
    Patel, Vishal
    Resnick, Karen
    Liang, Cynthia
    Smith, Matthew
    Haghpeykar, Haleh Sangi
    Mastrobattista, Joan M.
    Gandhi, Manisha
    JOURNAL OF ULTRASOUND IN MEDICINE, 2020, 39 (10) : 2027 - 2031