Structural mechanism of mitochondrial membrane remodelling by human OPA1

被引:31
|
作者
von der Malsburg, Alexander [1 ]
Sapp, Gracie M. [2 ]
Zuccaro, Kelly E. [2 ]
von Appen, Alexander [3 ,4 ]
Moss, Frank R. [3 ,5 ]
Kalia, Raghav [6 ]
Bennett, Jeremy A. [2 ]
Abriata, Luciano A. [7 ,8 ,9 ]
Dal Peraro, Matteo [7 ,9 ]
van der Laan, Martin [1 ]
Frost, Adam [3 ,5 ,10 ,11 ]
Aydin, Halil [2 ]
机构
[1] Saarland Univ, Ctr Mol Signaling, Med Biochem & Mol Biol, PZMS,Med Sch, Homburg, Germany
[2] Univ Colorado Boulder, Dept Biochem, Boulder, CO 80309 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94118 USA
[4] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[5] Altos Labs Bay Area Inst Sci, San Francisco, CA 92121 USA
[6] Univ Calif San Francisco, Dept Physiol, San Francisco, CA USA
[7] Ecole Polytech Fed Lausanne, Inst Bioengn, Sch Life Sci, Lausanne, Switzerland
[8] Ecole Polytech Fed Lausanne, Sch Life Sci, Prot Prod & Struct Core Facil, Lausanne, Switzerland
[9] Swiss Inst Bioinformat, Lausanne, Switzerland
[10] Chan Zuckerberg Biohub, San Francisco, CA USA
[11] Univ Calif San Francisco, Quantitat Biosci Inst, San Francisco, CA 94143 USA
关键词
DOMINANT OPTIC ATROPHY; CYTOCHROME-C RELEASE; PROTEIN; DYNAMIN; FUSION; SOFTWARE; GTPASE; VISUALIZATION; CONSERVATION; HYDROLYSIS;
D O I
10.1038/s41586-023-06441-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain, and OPA1 oligomerization through multiple assembly interfaces promotes the helical assembly of a flexible OPA1 lattice on the membrane, driving mitochondrial fusion in cells.
引用
收藏
页码:1101 / 1108
页数:33
相关论文
共 50 条
  • [41] OPA1 expression in the human retina and optic nerve
    Wang, An-Guor
    Fann, Ming-Ji
    Yu, Hsin-Yi
    Yen, May-Yung
    EXPERIMENTAL EYE RESEARCH, 2006, 83 (05) : 1171 - 1178
  • [42] Standardized mitochondrial analysis gives new insights into mitochondrial dynamics and OPA1 function
    Chevrollier, Arnaud
    Cassereau, Julien
    Ferre, Marc
    Alban, Jennifer
    Desquiret-Dumas, Valerie
    Gueguen, Naig
    Amati-Bonneau, Patrizia
    Procaccio, Vincent
    Bonneau, Dominique
    Reynier, Pascal
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2012, 44 (06) : 980 - 988
  • [43] The short variant of the mitochondrial dynamin OPA1 maintains mitochondrial energetics and cristae structure
    Lee, Hakjoo
    Smith, Sylvia B.
    Yoon, Yisang
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (17) : 7115 - 7130
  • [44] Inhibition of the mitochondrial protein Opa1 curtails breast cancer growth
    Zamberlan, Margherita
    Boeckx, Amandine
    Muller, Florian
    Vinelli, Federica
    Ek, Olivier
    Vianello, Caterina
    Coart, Emeline
    Shibata, Keitaro
    Christian, Aurelie
    Grespi, Francesca
    Giacomello, Marta
    Struman, Ingrid
    Scorrano, Luca
    Herkenne, Stephanie
    JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH, 2022, 41 (01)
  • [45] Opa1 processing is dispensable in mouse development but is protective in mitochondrial cardiomyopathy
    Ahola, Sofia
    Pazurek, Lilli A.
    Mayer, Fiona
    Lampe, Philipp
    Hermans, Steffen
    Becker, Lore
    Amarie, Oana, V
    Fuchs, Helmut
    Gailus-Durner, Valerie
    de Angelis, Martin Hrabe
    Riedel, Dietmar
    Nolte, Hendrik
    Langer, Thomas
    SCIENCE ADVANCES, 2024, 10 (31):
  • [46] OPA1 regulates respiratory supercomplexes assembly: The role of mitochondrial swelling
    Jang, Sehwan
    Javadov, Sabzali
    MITOCHONDRION, 2020, 51 : 30 - 39
  • [47] Mitochondrial OMA1 and OPA1 as Gatekeepers of Organellar Structure/Function and Cellular Stress Response
    Gilkerson, Robert
    De la Torre, Patrick
    Vallier, Shaynah St.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9
  • [48] Mitochondrial dysfunction in an Opa1Q285STOP mouse model of dominant optic atrophy results from Opa1 haploinsufficiency
    Kushnareva, Y.
    Seong, Y.
    Andreyev, A. Y.
    Kuwana, T.
    Kiosses, W. B.
    Votruba, M.
    Newmeyer, D. D.
    CELL DEATH & DISEASE, 2016, 7 : e2309 - e2309
  • [49] Caspases indirectly regulate cleavage of the mitochondrial fusion GTPase OPA1 in neurons undergoing apoptosis
    Loucks, F. Alexandra
    Schroeder, Emily K.
    Zommer, Amelia E.
    Hilger, Shea
    Kelsey, Natalie A.
    Bouchard, Ron J.
    Blackstone, Craig
    Brewster, Jay L.
    Linseman, Daniel A.
    BRAIN RESEARCH, 2009, 1250 : 63 - 74
  • [50] Eight human OPA1 isoforms, long and short: What are they for?
    Del Dotto, Valentina
    Fogazza, Mario
    Careilli, Valerio
    Rugolo, Michela
    Zanna, Claudia
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2018, 1859 (04): : 263 - 269