Structural mechanism of mitochondrial membrane remodelling by human OPA1

被引:31
|
作者
von der Malsburg, Alexander [1 ]
Sapp, Gracie M. [2 ]
Zuccaro, Kelly E. [2 ]
von Appen, Alexander [3 ,4 ]
Moss, Frank R. [3 ,5 ]
Kalia, Raghav [6 ]
Bennett, Jeremy A. [2 ]
Abriata, Luciano A. [7 ,8 ,9 ]
Dal Peraro, Matteo [7 ,9 ]
van der Laan, Martin [1 ]
Frost, Adam [3 ,5 ,10 ,11 ]
Aydin, Halil [2 ]
机构
[1] Saarland Univ, Ctr Mol Signaling, Med Biochem & Mol Biol, PZMS,Med Sch, Homburg, Germany
[2] Univ Colorado Boulder, Dept Biochem, Boulder, CO 80309 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94118 USA
[4] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[5] Altos Labs Bay Area Inst Sci, San Francisco, CA 92121 USA
[6] Univ Calif San Francisco, Dept Physiol, San Francisco, CA USA
[7] Ecole Polytech Fed Lausanne, Inst Bioengn, Sch Life Sci, Lausanne, Switzerland
[8] Ecole Polytech Fed Lausanne, Sch Life Sci, Prot Prod & Struct Core Facil, Lausanne, Switzerland
[9] Swiss Inst Bioinformat, Lausanne, Switzerland
[10] Chan Zuckerberg Biohub, San Francisco, CA USA
[11] Univ Calif San Francisco, Quantitat Biosci Inst, San Francisco, CA 94143 USA
关键词
DOMINANT OPTIC ATROPHY; CYTOCHROME-C RELEASE; PROTEIN; DYNAMIN; FUSION; SOFTWARE; GTPASE; VISUALIZATION; CONSERVATION; HYDROLYSIS;
D O I
10.1038/s41586-023-06441-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain, and OPA1 oligomerization through multiple assembly interfaces promotes the helical assembly of a flexible OPA1 lattice on the membrane, driving mitochondrial fusion in cells.
引用
收藏
页码:1101 / 1108
页数:33
相关论文
共 50 条
  • [31] Severe mitochondrial encephalomyopathy caused by de novo variants in OPA1 gene
    Di Nottia, Michela
    Rizza, Teresa
    Baruffini, Enrico
    Nesti, Claudia
    Torraco, Alessandra
    Diodato, Daria
    Martinelli, Diego
    Dal Canto, Flavio
    Gilea, Alexandru Ionut
    Zoccola, Martina
    Siri, Barbara
    Dionisi-Vici, Carlo
    Bertini, Enrico
    Santorelli, Filippo Maria
    Goffrini, Paola
    Carrozzo, Rosalba
    FRONTIERS IN GENETICS, 2024, 15
  • [32] Structural insights into G domain dimerization and pathogenic mutation of OPA1
    Yu, Caiting
    Zhao, Jinghua
    Yan, Liming
    Qi, Yuanbo
    Guo, Xiangyang
    Lou, Zhiyong
    Hu, Junjie
    Rao, Zihe
    JOURNAL OF CELL BIOLOGY, 2020, 219 (07)
  • [33] The antiapoptotic OPA1/Parl couple participates in mitochondrial adaptation to heat shock
    Szklarz, Luiza K. Sanjuan
    Scorrano, Luca
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2012, 1817 (10): : 1886 - 1893
  • [34] OPA1 regulation of mitochondrial dynamics in skeletal and cardiac muscle
    Noone, John
    O'Gorman, Donal J.
    Kenny, Helena C.
    TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2022, 33 (10) : 710 - 721
  • [35] MARF and Opa1 Control Mitochondrial and Cardiac Function in Drosophila
    Dorn, Gerald W., II
    Clark, Charles F.
    Eschenbacher, William H.
    Kang, Min-Young
    Engelhard, John T.
    Warner, Stephen J.
    Matkovich, Scot J.
    Jowdy, Casey C.
    CIRCULATION RESEARCH, 2011, 108 (01) : 12 - U34
  • [36] Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1
    Yamaguchi, Ryuji
    Perkins, Guy
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2009, 1787 (08): : 963 - 972
  • [37] Mitochondrial membrane potential and oxidative stress interact to regulate Oma1-dependent processing of Opa1 and mitochondrial dynamics
    Fogo, Garrett M.
    Raghunayakula, Sarita
    Emaus, Katlynn J.
    Torres, Francisco J. Torres
    Wider, Joseph M.
    Sanderson, Thomas H.
    FASEB JOURNAL, 2024, 38 (18)
  • [38] OPA1 in Lipid Metabolism: Function of OPA1 in Lipolysis and Thermogenesis of Adipocytes
    Chu, Dinh-Toi
    Tao, Yang
    Tasken, Kjetil
    HORMONE AND METABOLIC RESEARCH, 2017, 49 (04) : 276 - 285
  • [39] High-throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts
    Cretin, Emma
    Lopes, Priscilla
    Vimont, Elodie
    Tatsuta, Takashi
    Langer, Thomas
    Gazi, Anastasia
    Sachse, Martin
    Yu-Wai-Man, Patrick
    Reynier, Pascal
    Wai, Timothy
    EMBO MOLECULAR MEDICINE, 2021, 13 (06)
  • [40] OPA1 overexpression ameliorates mitochondrial cristae remodeling, mitochondrial dysfunction, and neuronal apoptosis in prion diseases
    Wu, Wei
    Zhao, Deming
    Shah, Syed Zahid Ali
    Zhang, Xixi
    Lai, Mengyu
    Yang, Dongming
    Wu, Xiaoqian
    Guan, Zhiling
    Li, Jie
    Zhao, Huafen
    Li, Wen
    Gao, Hongli
    Zhou, Xiangmei
    Qiao, Jian
    Yang, Lifeng
    CELL DEATH & DISEASE, 2019, 10 (10)