Structural mechanism of mitochondrial membrane remodelling by human OPA1

被引:31
|
作者
von der Malsburg, Alexander [1 ]
Sapp, Gracie M. [2 ]
Zuccaro, Kelly E. [2 ]
von Appen, Alexander [3 ,4 ]
Moss, Frank R. [3 ,5 ]
Kalia, Raghav [6 ]
Bennett, Jeremy A. [2 ]
Abriata, Luciano A. [7 ,8 ,9 ]
Dal Peraro, Matteo [7 ,9 ]
van der Laan, Martin [1 ]
Frost, Adam [3 ,5 ,10 ,11 ]
Aydin, Halil [2 ]
机构
[1] Saarland Univ, Ctr Mol Signaling, Med Biochem & Mol Biol, PZMS,Med Sch, Homburg, Germany
[2] Univ Colorado Boulder, Dept Biochem, Boulder, CO 80309 USA
[3] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94118 USA
[4] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[5] Altos Labs Bay Area Inst Sci, San Francisco, CA 92121 USA
[6] Univ Calif San Francisco, Dept Physiol, San Francisco, CA USA
[7] Ecole Polytech Fed Lausanne, Inst Bioengn, Sch Life Sci, Lausanne, Switzerland
[8] Ecole Polytech Fed Lausanne, Sch Life Sci, Prot Prod & Struct Core Facil, Lausanne, Switzerland
[9] Swiss Inst Bioinformat, Lausanne, Switzerland
[10] Chan Zuckerberg Biohub, San Francisco, CA USA
[11] Univ Calif San Francisco, Quantitat Biosci Inst, San Francisco, CA 94143 USA
关键词
DOMINANT OPTIC ATROPHY; CYTOCHROME-C RELEASE; PROTEIN; DYNAMIN; FUSION; SOFTWARE; GTPASE; VISUALIZATION; CONSERVATION; HYDROLYSIS;
D O I
10.1038/s41586-023-06441-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain, and OPA1 oligomerization through multiple assembly interfaces promotes the helical assembly of a flexible OPA1 lattice on the membrane, driving mitochondrial fusion in cells.
引用
收藏
页码:1101 / 1108
页数:33
相关论文
共 50 条
  • [1] Mitochondrial Membrane Dynamics-Functional Positioning of OPA1
    Lee, Hakjoo
    Yoon, Yisang
    ANTIOXIDANTS, 2018, 7 (12)
  • [2] Mitochondrial retention of Opa1 is required for mouse embryogenesis
    Moore, Billie A.
    Aviles, Gladys D. Gonzalez
    Larkins, Christine E.
    Hillman, Michael J.
    Caspary, Tamara
    MAMMALIAN GENOME, 2010, 21 (7-8) : 350 - 360
  • [3] OPA1 (dys)functions
    Landes, Thomas
    Leroy, Ingrid
    Bertholet, Ambre
    Diot, Alan
    Khosrobakhsh, Farnoosh
    Daloyau, Marlene
    Davezac, Noelie
    Miquel, Marie-Christine
    Courilleau, Delphine
    Guillou, Emmanuelle
    Olichon, Aurelien
    Lenaers, Guy
    Arnaune-Pelloquin, Laetitia
    Emorine, Laurent J.
    Belenguer, Pascale
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2010, 21 (06) : 593 - 598
  • [4] Relationship between OPA1 and cardiolipin in mitochondrial inner-membrane fusion
    Ban, Tadato
    Kohno, Hiroto
    Ishihara, Takaya
    Ishihara, Naotada
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2018, 1859 (09): : 951 - 957
  • [5] Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane
    Ge, Yifan
    Shi, Xiaojun
    Boopathy, Sivakumar
    McDonald, Julie
    Smith, Adam W.
    Chao, Luke H.
    ELIFE, 2020, 9
  • [6] Mitofusins and OPA1 Mediate Sequential Steps in Mitochondrial Membrane Fusion
    Song, Zhiyin
    Ghochani, Mariam
    McCaffery, J. Michael
    Frey, Terrence G.
    Chan, David C.
    MOLECULAR BIOLOGY OF THE CELL, 2009, 20 (15) : 3525 - 3532
  • [7] Changes in Mitochondrial Morphology and Bioenergetics in Human Lymphoblastoid Cells With Four Novel OPA1 Mutations
    Kao, Shu-Huei
    Yen, May-Yung
    Wang, An-Guor
    Yeh, Yi-Ling
    Lin, An-Lo
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (04) : 2269 - 2278
  • [8] Opa1 Deficiency Leads to Diminished Mitochondrial Bioenergetics With Compensatory Increased Mitochondrial Motility
    Sun, Shanshan
    Erchova, Irina
    Sengpiel, Frank
    Votruba, Marcela
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (06)
  • [9] OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution
    Elachouri, Ghizlane
    Vidoni, Sara
    Zanna, Claudia
    Pattyn, Alexandre
    Boukhaddaoui, Hassan
    Gaget, Karen
    Yu-Wai-Man, Patrick
    Gasparre, Giuseppe
    Sarzi, Emmanuelle
    Delettre, Cecile
    Olichon, Aurelien
    Loiseau, Dominique
    Reynier, Pascal
    Chinnery, Patrick F.
    Rotig, Agnes
    Carelli, Valerio
    Hamel, Christian P.
    Rugolo, Michela
    Lenaers, Guy
    GENOME RESEARCH, 2011, 21 (01) : 12 - 20
  • [10] Mitochondrial dynamics and disease, OPA1
    Olichon, Aurelien
    Guillou, Emmanuelle
    Delettre, Cecile
    Landes, Thomas
    Arnaune-Pelloquin, Laetitia
    Emorine, Laurent J.
    Mils, Valerie
    Daloyau, Marlene
    Hamel, Christian
    Amati-Bonneau, Patrizia
    Bonneau, Dominique
    Reynier, Pascal
    Lenaers, Guy
    Belenguer, Pascale
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2006, 1763 (5-6): : 500 - 509