Rational design of heterogenized molecular phthalocyanine hybrid single-atom electrocatalyst towards two-electron oxygen reduction

被引:91
作者
Fan, Wenjun [1 ]
Duan, Zhiyao [2 ]
Liu, Wei [3 ]
Mehmood, Rashid [1 ,4 ]
Qu, Jiating [1 ,4 ]
Cao, Yucheng [1 ,4 ]
Guo, Xiangyang [1 ]
Zhong, Jun [5 ]
Zhang, Fuxiang [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian Natl Lab Clean Energy, Dalian, Peoples R China
[2] Northwestern Polytech Univ, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[3] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; ELECTROREDUCTION; CATALYSTS; IDENTIFICATION; SITES; CYTOCHROME; PORPHYRIN; OXIDATION;
D O I
10.1038/s41467-023-37066-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-atom catalysts supported on solid substrates have inspired extensive interest, but the rational design of high-efficiency single-atom catalysts is still plagued by ambiguous structure determination of active sites and its local support effect. Here, we report hybrid single-atom catalysts by an axial coordination linkage of molecular cobalt phthalocyanine with carbon nanotubes for selective oxygen reduction reaction by screening from a series of metal phthalocyanines via preferential density-functional theory calculations. Different from conventional heterogeneous single-atom catalysts, the hybrid single-atom catalysts are proven to facilitate rational screening of target catalysts as well as understanding of its underlying oxygen reduction reaction mechanism due to its well-defined active site structure and clear coordination linkage in the hybrid single-atom catalysts. Consequently, the optimized Co hybrid single-atom catalysts exhibit improved 2e(-) oxygen reduction reaction performance compared to the corresponding homogeneous molecular catalyst in terms of activity and selectivity. When prepared as an air cathode in an air-breathing flow cell device, the optimized hybrid catalysts enable the oxygen reduction reaction at 300mAcm(-2) exhibiting a stable Faradaic efficiency exceeding 90% for 25h. Difficulties in elucidating active sites and the role of the support hamper the development of high-efficiency two-electron oxygen reduction electrocatalysts. Here, the authors develop hybrid single-atom catalysts by rational experimental and theoretical screening for hydrogen peroxide production.
引用
收藏
页数:11
相关论文
共 57 条
  • [1] Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis
    Bai, Lichen
    Hsu, Chia-Shuo
    Alexander, Duncan T. L.
    Chen, Hao Ming
    Hu, Xile
    [J]. NATURE ENERGY, 2021, 6 (11) : 1054 - 1066
  • [2] Pyridine-Functionalized Single-Walled Carbon Nanotubes as Gelators for Poly(acrylic acid) Hydrogels
    Bayazit, Mustafa K.
    Clarke, Lucinda S.
    Coleman, Karl S.
    Clarke, Nigel
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (44) : 15814 - 15819
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution
    Cao, Linlin
    Luo, Qiquan
    Liu, Wei
    Lin, Yue
    Liu, Xiaokang
    Cao, Yuanjie
    Zhang, Wei
    Wu, Yuen
    Yang, Jinlong
    Yao, Tao
    Wei, Shiqiang
    [J]. NATURE CATALYSIS, 2019, 2 (02) : 134 - 141
  • [5] STRUCTURE AND FUNCTION OF CYTOCHROME-C-OXIDASE
    CAPALDI, RA
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, 1990, 59 : 569 - 596
  • [6] Targeted proton delivery in the catalyzed reduction of oxygen to water by bimetallic Pacman porphyrins
    Chang, CJ
    Loh, ZH
    Shi, CN
    Anson, FC
    Nocera, DG
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (32) : 10013 - 10020
  • [7] Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications
    Chen, Yuanjun
    Ji, Shufang
    Chen, Chen
    Peng, Qing
    Wang, Dingsheng
    Li, Yadong
    [J]. JOULE, 2018, 2 (07) : 1242 - 1264
  • [8] Molecular electrocatalysts for the oxygen reduction reaction
    Dey, Subal
    Mondal, Biswajit
    Chatterjee, Sudipta
    Rana, Atanu
    Amanullah, S. K.
    Dey, Abhishek
    [J]. NATURE REVIEWS CHEMISTRY, 2017, 1 (12)
  • [9] Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
    Dudarev, SL
    Botton, GA
    Savrasov, SY
    Humphreys, CJ
    Sutton, AP
    [J]. PHYSICAL REVIEW B, 1998, 57 (03) : 1505 - 1509
  • [10] General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities
    Fei, Huilong
    Dong, Juncai
    Feng, Yexin
    Allen, Christopher S.
    Wan, Chengzhang
    Volosskiy, Boris
    Li, Mufan
    Zhao, Zipeng
    Wang, Yiliu
    Sun, Hongtao
    An, Pengfei
    Chen, Wenxing
    Guo, Zhiying
    Lee, Chain
    Chen, Dongliang
    Shakir, Imran
    Liu, Mingjie
    Hu, Tiandou
    Li, Yadong
    Kirkland, Angus I.
    Duan, Xiangfeng
    Huang, Yu
    [J]. NATURE CATALYSIS, 2018, 1 (01): : 63 - 72