An Improved Density Peak Clustering Algorithm Based on Chebyshev Inequality and Differential Privacy

被引:4
|
作者
Chen, Hua [1 ]
Zhou, Yuan [1 ,2 ]
Mei, Kehui [1 ]
Wang, Nan [1 ]
Tang, Mengdi [1 ]
Cai, Guangxing [1 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[2] Wuhan Univ Bioengn, Sch Comp Sci & Technol, Wuhan 430060, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 15期
基金
中国国家自然科学基金;
关键词
DPC algorithm; differential privacy; cosine distance; dichotomy method; Chebyshev inequality; BIG DATA;
D O I
10.3390/app13158674
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Featured Application Privacy protection and data mining. This study aims to improve the quality of the clustering results of the density peak clustering (DPC) algorithm and address the privacy protection problem in the clustering analysis process. To achieve this, a DPC algorithm based on Chebyshev inequality and differential privacy (DP-CDPC) is proposed. Firstly, the distance matrix is calculated using cosine distance instead of Euclidean distance when dealing with high-dimensional datasets, and the truncation distance is automatically calculated using the dichotomy method. Secondly, to solve the difficulty in selecting suitable clustering centers in the DPC algorithm, statistical constraints are constructed from the perspective of the decision graph using Chebyshev inequality, and the selection of clustering centers is achieved by adjusting the constraint parameters. Finally, to address the privacy leakage problem in the cluster analysis, the Laplace mechanism is applied to introduce noise to the local density in the process of cluster analysis, enabling the privacy protection of the algorithm. The experimental results demonstrate that the DP-CDPC algorithm can effectively select the clustering centers, improve the quality of clustering results, and provide good privacy protection performance.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Novel trajectory privacy-preserving method based on clustering using differential privacy
    Zhao, Xiaodong
    Pi, Dechang
    Chen, Junfu
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 149
  • [32] An Improved Approach of Data Integration Based on Differential Privacy
    Yu, Qihong
    Rao, Ruonan
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2014, : 395 - 399
  • [33] RETRACTED: CVDP k-means clustering algorithm for differential privacy based on coefficient of variation (Retracted Article)
    Kong, Yuting
    Qian, Yurong
    Tan, Fuxiang
    Bai, Lu
    Shao, Jinxin
    Ma, Tinghuai
    Tereshchenko, Sergei Nikolayevich
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (05) : 6027 - 6045
  • [34] Research on an Ensemble Classification Algorithm Based on Differential Privacy
    Jia, Junjie
    Qiu, Wanyong
    IEEE ACCESS, 2020, 8 : 93499 - 93513
  • [35] Node Attributed Query Access Algorithm Based on Improved Personalized Differential Privacy Protection in Social Network
    Xiaobo Yin
    Shunxiang Zhang
    Hui Xu
    International Journal of Wireless Information Networks, 2019, 26 : 165 - 173
  • [36] Chebyshev Inequality Based Approach to Chance Constrained Optimization Problems Using Differential Evolution
    Tagawa, Kiyoharu
    Fujita, Shohei
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT I, 2017, 10385 : 440 - 448
  • [37] Privacy-preserving collaborative filtering algorithm based on local differential privacy
    Bao, Ting
    Xu, Lei
    Zhu, Liehuang
    Wang, Lihong
    Li, Ruiguang
    Li, Tielei
    CHINA COMMUNICATIONS, 2021, 18 (11) : 42 - 60
  • [38] Random Forest Algorithm Based on Differential Privacy Protection
    Zhang, Yaling
    Feng, Pengfei
    Ning, Yao
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1259 - 1264
  • [39] Achieving Differential Privacy Publishing of Location-Based Statistical Data Using Grid Clustering
    Yan, Yan
    Sun, Zichao
    Mahmood, Adnan
    Xu, Fei
    Dong, Zhuoyue
    Sheng, Quan Z.
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (07)
  • [40] An Effective Data Privacy Protection Algorithm Based on Differential Privacy in Edge Computing
    Qiao, Yi
    Liu, Zhaobin
    Lv, Haoze
    Li, Minghui
    Huang, Zhiyi
    Li, Zhiyang
    Liu, Weijiang
    IEEE ACCESS, 2019, 7 : 136203 - 136213