Quantum entropy and central limit theorem

被引:14
作者
Bu, Kaifeng [1 ]
Gu, Weichen [2 ]
Jaffe, Arthur [1 ,3 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ New Hampshire, Dept Math & Stat, Durham, NH 03824 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
convolution; entropy; central limit theorem; CLASSICAL SIMULATION; COMPUTATIONAL ADVANTAGE; POWER INEQUALITY; OUTPUT ENTROPY; STATES; SYSTEMS; TELEPORTATION; CONJECTURE; COMPLEXITY; SUPREMACY;
D O I
10.1073/pnas.2304589120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a framework to study discrete-variable (DV) quantum systems based on qudits. It relies on notions of a mean state (MS), a minimal stabilizer-projection state (MSPS), and a new convolution. Some interesting consequences are: The MS is the closest MSPS to a given state with respect to the relative entropy; the MS is extremal with respect to the von Neumann entropy, demonstrating a "maximal entropy principle in DV systems." We obtain a series of inequalities for quantum entropies and for Fisher information based on convolution, giving a "second law of thermodynamics for quantum convolutions." We show that the convolution of two stabilizer states is a stabilizer state. We establish a central limit theorem, based on iterating the convolution of a zero-mean quantum state, and show this converges to its MS. The rate of convergence is characterized by the "magic gap," which we define in terms of the support of the characteristic function of the state. We elaborate on two examples: the DV beam splitter and the DV amplifier.
引用
收藏
页数:9
相关论文
共 131 条
  • [1] Aaronson S, 2011, ACM S THEORY COMPUT, P333
  • [2] QUANTUM CENTRAL LIMIT-THEOREMS FOR WEAKLY DEPENDENT MAPS .2.
    ACCARDI, L
    LU, YG
    [J]. ACTA MATHEMATICA HUNGARICA, 1994, 63 (03) : 249 - 282
  • [3] Resource theory of quantum non-Gaussianity and Wigner negativity
    Albarelli, Francesco
    Genoni, Marco G.
    Paris, Matteo G. A.
    Ferraro, Alessandro
    [J]. PHYSICAL REVIEW A, 2018, 98 (05)
  • [4] Alon Noga, 2016, PROBABILISTIC METHOD
  • [5] Solution of Shannon's problem on the monotonicity of entropy
    Artstein, S
    Ball, KM
    Barthe, F
    Naor, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) : 975 - 982
  • [6] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [7] Entropy power inequalities for qudits
    Audenaert, Koenraad
    Datta, Nilanjana
    Ozols, Maris
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (05)
  • [8] ENTROPY AND THE CENTRAL-LIMIT-THEOREM
    BARRON, AR
    [J]. ANNALS OF PROBABILITY, 1986, 14 (01) : 336 - 342
  • [9] Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting
    Bartlett, SD
    Sanders, BC
    [J]. PHYSICAL REVIEW A, 2002, 65 (04): : 5
  • [10] Efficient classical simulation of continuous variable quantum information processes
    Bartlett, SD
    Sanders, BC
    Braunstein, SL
    Nemoto, K
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (09) : 4 - 979044