Predicting flow velocity in a vegetative alluvial channel using standalone and hybrid machine learning techniques

被引:6
|
作者
Kumar, Sanjit [1 ]
Kumar, Bimlesh [2 ]
Deshpande, Vishal [3 ]
Agarwal, Mayank [1 ]
机构
[1] Indian Inst Technol Patna, Dept Comp Sci & Engn, Patna, India
[2] Indian Inst Technol Guwahati, Dept Civil Engn, Gauhati, India
[3] Indian Inst Technol Patna, Dept Civil & Environm Engn, Patna, India
关键词
Flow vegetation; Flow resistance; Alluvial channel; Submerged; AR-M5P; BA-M5P; BA-RT; M5P; AR-RT; RT; RESISTANCE; TURBULENCE; MODEL; TRANSPORT; DRAG;
D O I
10.1016/j.eswa.2023.120885
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The presence of vegetation in the water bodies has a profound effect on the flow velocity in an open channel due to the resistance offered by it. In rivers, estuaries, and coastal locations, vegetation significantly impacts the local hydrodynamics, which in turn affects various morphodynamic and biophysical processes. In this context, an accurate prediction of flow velocity in a vegetative alluvial channel is paramount. Several empirical and data-driven methodologies have been proposed as viable solutions in the literature to predict the flow velocity in a vegetative alluvial channel. Empirical equations cannot always be trusted to be accurate, but they have the advantage of being simple and physically appealing. Since machine learning (ML) techniques can capture complicated non-linear correlations, they are frequently employed to map natural processes. In this work, we investigate the performance of multiple standalone and hybrid Machine Learning (ML) techniques for predicting flow velocity (U) in a vegetative alluvial channel. An array of datasets available in the literature, comprising wide ranges of the number of cylinders per unit horizontal area (m), flow depth (h), channel slope (I), height of the vegetation (k), diameter of cylindrical vegetation (D), and non-dimensional drag coefficient (Cd) have been utilized in this study. For standalone methods, we made use of the M5Prime and Random Tree (RT) methods, while for hybrid ML method approaches, we made use of the Additive Regressor (AR) and Bagging (BA) methods. In the present study, six ML methods, viz., M5P, AR-M5P, BA-M5P, RT, BA-RT, and AR-RT, have been explored and their performance has also been analyzed. Among the proposed methods, AR-M5P provides the highest prediction (R2 = 0.954, CC = 0.977, NSE = 0.954, MAE = 0.042, MSE = 0.003, and Pbias = 1.466), followed by BA-M5P, BA-RT, M5P, RT, and AR-RT for the prediction of flow velocity in a vegetative alluvial channel. We have also performed the sensitivity analysis and found that the height of vegetation is the most sensitive variable in flow velocity prediction.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Machine Learning Approach for the Mean Flow Velocity Prediction in Alluvial Channels
    Kitsikoudis, Vasileios
    Sidiropoulos, Epaminondas
    Iliadis, Lazaros
    Hrissanthou, Vlassios
    WATER RESOURCES MANAGEMENT, 2015, 29 (12) : 4379 - 4395
  • [2] Predicting the bulk average velocity of open-channel flow with submerged rigid vegetation
    Shi, Haoran
    Liang, Xuerong
    Huai, Wenxin
    Wang, Yufei
    JOURNAL OF HYDROLOGY, 2019, 572 (213-225) : 213 - 225
  • [3] A Machine Learning Approach for the Mean Flow Velocity Prediction in Alluvial Channels
    Vasileios Kitsikoudis
    Epaminondas Sidiropoulos
    Lazaros Iliadis
    Vlassios Hrissanthou
    Water Resources Management, 2015, 29 : 4379 - 4395
  • [4] Developing an expert system for predicting alluvial channel geometry using ANN
    Riahi-Madvar, Hossien
    Ayyoubzadeh, Seyed Ali
    Atani, Mina Gholizadeh
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (01) : 215 - 222
  • [5] Flow prediction in vegetative channel using hybrid artificial neural network approach
    Kumar, Bimlesh
    JOURNAL OF HYDROINFORMATICS, 2014, 16 (04) : 839 - 849
  • [6] Predicting the Occurrence of Construction Disputes Using Machine Learning Techniques
    Ayhan, Murat
    Dikmen, Irem
    Birgonul, M. Talat
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2021, 147 (04)
  • [7] Predicting sustainable arsenic mitigation using machine learning techniques
    Singh, Sushant K.
    Taylor, Robert W.
    Pradhan, Biswajeet
    Shirzadi, Ataollah
    Binh Thai Pham
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 232
  • [8] Predicting ESG Controversies in Banks Using Machine Learning Techniques
    Dipierro, Anna Rita
    Barrionuevo, Fernando Jimenez
    Toma, Pierluigi
    CORPORATE SOCIAL RESPONSIBILITY AND ENVIRONMENTAL MANAGEMENT, 2025, : 3525 - 3544
  • [9] Data Balancing Techniques for Predicting Student Dropout Using Machine Learning
    Mduma, Neema
    DATA, 2023, 8 (03)
  • [10] Predicting saturation pressure of reservoir fluids using machine learning techniques
    Ali, Faizan
    Khan, Muhammad Arqam
    Haider, Ghulam
    Adnan-ul Haque, Syed
    Nadeem, Ayesha
    Arif, Neha
    PETROLEUM SCIENCE AND TECHNOLOGY, 2023, 41 (10) : 1039 - 1059