Alternating submodules for partition algebras, rook algebras, and rook-Brauer algebras

被引:1
|
作者
Campbell, John M. [1 ]
机构
[1] York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, Canada
关键词
Algae; kinetics; pyrolysis; TGA; thermodynamics; REPRESENTATIONS; MONOIDS; IDEMPOTENTS;
D O I
10.1016/j.jpaa.2023.107452
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Letting n & GE; 2k, the partition algebra CAk & GE;2(n) has two one-dimensional subrepresentations that correspond in a natural way to the alternating and trivial characters of the symmetric group Sk. In 2019, Benkart and Halverson introduced and proved evaluations in the two distinguished bases of CAk(n) for nonzero elements in the one-dimensional regular CAk(n)-submodule that corresponds to the Young symmetrizer E & sigma;& ISIN;Sk & sigma;; in 2016, Xiao proved an explicit formula for the analogue of the sign representation for the rook monoid algebra. In this article, we lift Xiao's formula to a diagram basis evaluation in the partition algebra CAk(n). We prove that our diagram basis evaluation for this lifting, which we denote as Altk & ISIN; CAk(n), generates a one-dimensional module under the action of multiplication by arbitrary elements in CAk(n). Our explicit formula for Altk gives us a cancellation-free formula for the other one-dimensional regular CAk(n)-module, with regard to Benkart and Halverson's lifting of E & sigma;& ISIN;Sk & sigma;. We then use a sign-reversing involution to evaluate our one-dimensional generators in the orbit basis, and we use our explicit formula for Altk to lift Young's N-and P-functions so as to allow set-partition tableaux as arguments, and we use this lifting to construct Young-type matrix units for CA2(n) and CA3(n).& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:31
相关论文
共 26 条
  • [11] Decomposition numbers of quantized walled Brauer algebras
    Rui, Hebing
    Song, Linliang
    MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (3-4) : 669 - 689
  • [12] Restricting cell modules of partition algebras
    Paul, Inga
    JOURNAL OF ALGEBRA, 2019, 532 : 201 - 230
  • [13] The irreducible characters of the alternating Hecke algebras
    Mathas, Andrew
    Neves, Leah
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2018, 47 (02) : 175 - 211
  • [14] Brauer-Clifford equivalence of full matrix algebras
    Turull, Alexandre
    JOURNAL OF ALGEBRA, 2009, 321 (12) : 3643 - 3658
  • [15] A construction of quarter BPS coherent states and Brauer algebras
    Lin, Hai
    Zeng, Keyou
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 24 (05) : 1111 - 1169
  • [16] Dimensions of irreducible modules for partition algebras and tensor power multiplicities for symmetric and alternating groups
    Benkart, Georgia
    Halverson, Tom
    Harman, Nate
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2017, 46 (01) : 77 - 108
  • [17] Braiding quantum gates from partition algebras
    Padmanabhan, Pramod
    Sugino, Fumihiko
    Trancanelli, Diego
    QUANTUM, 2020, 4
  • [18] The finite dimensional irreducible modules for affine walled Brauer algebras
    Si, Mei
    JOURNAL OF ALGEBRA, 2021, 586 : 1088 - 1109
  • [19] Free particles from Brauer algebras in complex matrix models
    Kimura, Yusuke
    Ramgoolam, Sanjaye
    Turton, David
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (05):
  • [20] Cuspidal sln-modules and deformations of certain Brauer tree algebras
    Mazorchuk, Volodymyr
    Stroppel, Catharina
    ADVANCES IN MATHEMATICS, 2011, 228 (02) : 1008 - 1042