Letting n & GE; 2k, the partition algebra CAk & GE;2(n) has two one-dimensional subrepresentations that correspond in a natural way to the alternating and trivial characters of the symmetric group Sk. In 2019, Benkart and Halverson introduced and proved evaluations in the two distinguished bases of CAk(n) for nonzero elements in the one-dimensional regular CAk(n)-submodule that corresponds to the Young symmetrizer E & sigma;& ISIN;Sk & sigma;; in 2016, Xiao proved an explicit formula for the analogue of the sign representation for the rook monoid algebra. In this article, we lift Xiao's formula to a diagram basis evaluation in the partition algebra CAk(n). We prove that our diagram basis evaluation for this lifting, which we denote as Altk & ISIN; CAk(n), generates a one-dimensional module under the action of multiplication by arbitrary elements in CAk(n). Our explicit formula for Altk gives us a cancellation-free formula for the other one-dimensional regular CAk(n)-module, with regard to Benkart and Halverson's lifting of E & sigma;& ISIN;Sk & sigma;. We then use a sign-reversing involution to evaluate our one-dimensional generators in the orbit basis, and we use our explicit formula for Altk to lift Young's N-and P-functions so as to allow set-partition tableaux as arguments, and we use this lifting to construct Young-type matrix units for CA2(n) and CA3(n).& COPY; 2023 Elsevier B.V. All rights reserved.
机构:
E China Normal Univ, Shanghai Key Lab PMMP, Dept Math, Shanghai 200241, Peoples R ChinaE China Normal Univ, Shanghai Key Lab PMMP, Dept Math, Shanghai 200241, Peoples R China
Rui, Hebing
Song, Linliang
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R ChinaE China Normal Univ, Shanghai Key Lab PMMP, Dept Math, Shanghai 200241, Peoples R China
机构:
Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R ChinaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Lin, Hai
Zeng, Keyou
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, CanadaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
机构:
Inst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon, South KoreaInst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon, South Korea
Padmanabhan, Pramod
Sugino, Fumihiko
论文数: 0引用数: 0
h-index: 0
机构:
Inst for Basic Sci Korea, Ctr Theoret Phys Universe, Daejeon, South KoreaInst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon, South Korea
Sugino, Fumihiko
Trancanelli, Diego
论文数: 0引用数: 0
h-index: 0
机构:
Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, Via Campi 213-A, I-41125 Modena, Italy
Ist Nazl Fis Nucl, Sez Bologna, Via Irnerio 46, I-40126 Bologna, ItalyInst for Basic Sci Korea, Ctr Theoret Phys Complex Syst, Daejeon, South Korea
机构:
Queen Mary Univ London, Dept Phys, Ctr Res String Theory, London E1 4NS, EnglandQueen Mary Univ London, Dept Phys, Ctr Res String Theory, London E1 4NS, England
Kimura, Yusuke
Ramgoolam, Sanjaye
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Dept Phys, Ctr Res String Theory, London E1 4NS, EnglandQueen Mary Univ London, Dept Phys, Ctr Res String Theory, London E1 4NS, England
Ramgoolam, Sanjaye
Turton, David
论文数: 0引用数: 0
h-index: 0
机构:
Queen Mary Univ London, Dept Phys, Ctr Res String Theory, London E1 4NS, EnglandQueen Mary Univ London, Dept Phys, Ctr Res String Theory, London E1 4NS, England