A microfluidic chip for geoelectrical monitoring of critical zone processes

被引:11
作者
Rembert, Flore [1 ,2 ]
Stolz, Arnaud [2 ]
Soulaine, Cyprien [1 ]
Roman, Sophie [1 ]
机构
[1] Univ Orleans, CNRS, BRGM, ISTO,UMR 7327, F-45071 Orleans, France
[2] Univ Orleans, CNRS, GREMI, UMR 7344, F-45067 Orleans, France
基金
欧洲研究理事会;
关键词
SPECTRAL INDUCED POLARIZATION; DIELECTRIC-SPECTROSCOPY; IMPEDANCE SPECTROSCOPY; MINERAL PRECIPITATION; DISSOLUTION; FLOW; PERMEABILITY; CONDUCTIVITY; POROSITY; MODEL;
D O I
10.1039/d3lc00377a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We miniaturize geoelectrical acquisition using advanced microfabrication technologies to investigate coupled processes in the critical zone. We focus on the development of the complex electrical conductivity acquisition with the spectral induced polarization (SIP) method on a microfluidic chip equipped with electrodes. SIP is an innovative detection method that has the potential to monitor biogeochemical processes. However, due to the lack of microscale visualization of the processes, the interpretation of the SIP response remains under debate. This approach at the micrometer scale allows working in well-controlled conditions, with real-time monitoring by high-speed and high-resolution microscopy. It enables direct observation of microscopic reactive transport processes in the critical zone. We monitor the dissolution of pure calcite, a common geochemical reaction studied as an analog of the water-mineral interactions. We highlight the strong correlation between SIP response and dissolution through image processing. These results demonstrate that the proposed technological advancement will provide a further understanding of the critical zone processes through SIP observation.
引用
收藏
页码:3433 / 3442
页数:10
相关论文
共 50 条
  • [21] Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale
    Rembert, Flore
    Leger, Marie
    Jougnot, Damien
    Luquot, Linda
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2023, 27 (02) : 417 - 430
  • [22] OZCAR: The French Network of Critical Zone Observatories
    Gaillardet, J.
    Braud, I.
    Hankard, F.
    Anquetin, S.
    Bour, O.
    Dorfliger, N.
    de Dreuzy, J. R.
    Galle, S.
    Galy, C.
    Gogo, S.
    Gourcy, L.
    Habets, F.
    Laggoun, F.
    Longuevergne, L.
    Le Borgne, T.
    Naaim-Bouvet, F.
    Nord, G.
    Simonneaux, V.
    Six, D.
    Tallec, T.
    Valentin, C.
    Abril, G.
    Allemand, P.
    Arenes, A.
    Arfib, B.
    Arnaud, L.
    Arnaud, N.
    Arnaud, P.
    Audry, S.
    Comte, V. Bailly
    Batiot, C.
    Battais, A.
    Bellot, H.
    Bernard, E.
    Bertrand, C.
    Bessiere, H.
    Binet, S.
    Bodin, J.
    Bodin, X.
    Boithias, L.
    Bouchez, J.
    Boudevillain, B.
    Moussa, I. Bouzou
    Branger, F.
    Braun, J. J.
    Brunet, P.
    Caceres, B.
    Calmels, D.
    Cappelaere, B.
    Celle-Jeanton, H.
    VADOSE ZONE JOURNAL, 2018, 17 (01)
  • [23] Monitoring CO2 invasion processes at the pore scale using geological labs on chip
    Morais, S.
    Liu, N.
    Diouf, A.
    Bernard, D.
    Lecoutre, C.
    Garrabos, Y.
    Marre, S.
    LAB ON A CHIP, 2016, 16 (18) : 3493 - 3502
  • [24] Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures
    Dornhof, Johannes
    Kieninger, Jochen
    Muralidharan, Harshini
    Maurer, Jochen
    Urban, Gerald A.
    Weltin, Andreas
    LAB ON A CHIP, 2022, 22 (02) : 225 - 239
  • [25] Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications
    Jia, Luanluan
    Han, Fengxuan
    Yang, Huili
    Turnbull, Gareth
    Wang, Jiayuan
    Clarke, Jon
    Shu, Wenmiao
    Guo, Mingyu
    Li, Bin
    ADVANCED HEALTHCARE MATERIALS, 2019, 8 (13)
  • [26] Design and fabrication of microfluidic chip with micro/nano structures
    Chen, X.
    Cui, D. F.
    Zhang, L. L.
    2009 4TH IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1 AND 2, 2009, : 98 - 101
  • [27] SIMPLE analytical model for smart microfluidic chip design
    Dal Dosso, Francesco
    Bondarenko, Yura
    Kokalj, Tadej
    Lammertyn, Jeroen
    SENSORS AND ACTUATORS A-PHYSICAL, 2019, 287 : 131 - 137
  • [28] Numerical simulation of isolation of cancer cells in a microfluidic chip
    Djukic, T.
    Topalovic, M.
    Filipovic, N.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2015, 25 (08)
  • [29] Effective mixing in a microfluidic chip using magnetic particles
    Lee, Seung Hwan
    van Noort, Danny
    Lee, Ji Youn
    Zhang, Byoung-Tak
    Park, Tai Hyun
    LAB ON A CHIP, 2009, 9 (03) : 479 - 482
  • [30] Integrated electrical concentration and lysis of cells in a microfluidic chip
    Church, Christopher
    Zhu, Junjie
    Huang, Guohui
    Tzeng, Tzuen-Rong
    Xuan, Xiangchun
    BIOMICROFLUIDICS, 2010, 4 (04):