Frailty in aneurysmal subarachnoid hemorrhage: the risk analysis index

被引:4
|
作者
Dicpinigaitis, Alis J. [1 ]
Kazim, Syed Faraz [2 ]
Al-Mufti, Fawaz [1 ,3 ]
Hall, Daniel E. [4 ]
Reitz, Katherine E. [4 ]
Rumalla, Kavelin [2 ]
McIntyre, Matthew K. [5 ]
Arthur, Adam S. [6 ]
Srinivasan, Visish M. [7 ]
Burkhardt, Jan-Karl [7 ]
Schmidt, Meic H. [2 ]
Gandhi, Chirag D. [1 ,3 ]
Bowers, Christian A. [2 ]
机构
[1] New York Med Coll, Sch Med, Valhalla, NY 10595 USA
[2] Univ New Mexico, Dept Neurosurg, Hlth Sci Ctr, 1 Univ New Mexico,MSC10 5615, Albuquerque, NM 81731 USA
[3] New York Med Coll, Westchester Med Ctr, Dept Neurosurg, Valhalla, NY 10595 USA
[4] Univ Pittsburgh, Dept Surg, Pittsburgh, PA 15213 USA
[5] Oregon Hlth & Sci Univ, Dept Neurol Surg, Portland, OR 97239 USA
[6] Univ Tennessee Hlth Sci Ctr, Dept Neurosurg, Semmes Murphy Clin, Memphis, TN 38120 USA
[7] Univ Penn, Dept Neurosurg, Philadelphia, PA 19104 USA
关键词
Aneurysm; Database; Frailty; Hemorrhage; Subarachnoid; INPATIENT SAMPLE; OUTCOMES; ASSOCIATION; MANAGEMENT;
D O I
10.1007/s00415-023-11805-z
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundFew studies have evaluated frailty in the setting of aneurysmal subarachnoid hemorrhage (aSAH) using large-scale data. The risk analysis index (RAI) may be implemented at the bedside or assessed retrospectively, differentiating it from other indices used in administrative registry-based research.MethodsAdult aSAH hospitalizations were identified in the National Inpatient Sample (NIS) from 2015 to 2019. Complex samples statistical methods were performed to evaluate the comparative effect size and discriminative ability of the RAI, the modified frailty index (mFI), and the Hospital Frailty Risk Score (HFRS). Poor functional outcome was determined by the NIS-SAH Outcome Measure (NIS-SOM), shown to have high concordance with modified Rankin Scale scores > 2.Results42,300 aSAH hospitalizations were identified in the NIS during the study period. By both ordinal [adjusted odds ratio (aOR) 3.20, 95% confidence interval (CI) 3.05, 3.36, p < 0.001] and categorical stratification [frail aOR 3.59, 95% CI 3.39, 3.80, p < 0.001; severely frail aOR 6.67, 95% CI 5.78, 7.69, p < 0.001], the RAI achieved the largest effect sizes for NIS-SOM in comparison with the mFI and HFRS. Discrimination of the RAI for NIS-SOM in high-grade aSAH was significantly greater than that of the HFRS (c-statistic 0.651 vs. 0.615). The mFI demonstrated the lowest discrimination in both high-grade and normal-grade patients. A combined Hunt and Hess-RAI model (c-statistic 0.837, 95% CI 0.828, 0.845) for NIS-SOM achieved significantly greater discrimination than both the combined models for mFI and HFRS (p < 0.001).ConclusionThe RAI was robustly associated with poor functional outcomes in aSAH independent of established risk factors.
引用
收藏
页码:4820 / 4826
页数:7
相关论文
共 50 条
  • [1] Frailty in aneurysmal subarachnoid hemorrhage: the risk analysis index
    Alis J. Dicpinigaitis
    Syed Faraz Kazim
    Fawaz Al-Mufti
    Daniel E. Hall
    Katherine E. Reitz
    Kavelin Rumalla
    Matthew K. McIntyre
    Adam S. Arthur
    Visish M. Srinivasan
    Jan-Karl Burkhardt
    Meic H. Schmidt
    Chirag D. Gandhi
    Christian A. Bowers
    Journal of Neurology, 2023, 270 : 4820 - 4826
  • [2] Utility of frailty as a predictor of acute kidney injury in patients with aneurysmal subarachnoid hemorrhage
    Ng, Christina
    Dominguez, Jose F.
    Hosein-Woodley, Rasheed
    Feldstein, Eric
    Naftchi, Alexandria
    Lui, Aiden
    Dicpinigaitis, Alis J.
    McIntyre, Matthew K.
    Kaur, Gurmeen
    Santarelli, Justin
    Bauerschmidt, Andrew
    Mayer, Stephan A.
    Bowers, Christian A.
    Gandhi, Chirag D.
    Al-Mufti, Fawaz
    INTERVENTIONAL NEURORADIOLOGY, 2023, 29 (01) : 114 - 120
  • [3] Association of baseline frailty status with clinical outcome following aneurysmal subarachnoid hemorrhage
    Dicpinigaitis, Alis J.
    McIntyre, Matthew K.
    Al-Mufti, Fawaz
    Kazim, Syed Faraz
    Li, Boyi
    Schmidt, Meic H.
    Gandhi, Chirag D.
    Cole, Chad D.
    Bowers, Christian A.
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2022, 31 (05)
  • [4] Aspirin and Aneurysmal Subarachnoid Hemorrhage
    Gross, Bradley A.
    Lai, Pui Man Rosalind
    Frerichs, Kai U.
    Du, Rose
    WORLD NEUROSURGERY, 2014, 82 (06) : 1127 - 1130
  • [5] Risk factors for aneurysmal subarachnoid hemorrhage in Aomori, Japan
    Ohkuma, H
    Tabata, H
    Suzuki, S
    Islam, MS
    STROKE, 2003, 34 (01) : 96 - 100
  • [6] Controversies in the management of aneurysmal subarachnoid hemorrhage
    Naval, NS
    Stevens, RD
    Mirski, MA
    Bhardwaj, A
    CRITICAL CARE MEDICINE, 2006, 34 (02) : 511 - 524
  • [7] Age predicts outcomes better than frailty following aneurysmal subarachnoid hemorrhage: A retrospective cohort analysis
    McIntyre, Matthew K.
    Gandhi, Chirag
    Long, Andrew
    van Hoof, Alexander
    Li, Boyi
    Patel, Vikas
    Afridi, Adil
    Halabi, Mohamed
    Schmidt, Meic
    Cole, Chad
    Santarelli, Justin
    Al-Mufti, Fawaz
    Bowers, Christian A.
    CLINICAL NEUROLOGY AND NEUROSURGERY, 2019, 187
  • [8] Impact of Frailty Risk on Functional Outcome after Aneurysmal Subarachnoid Hemorrhage: A Historical Cohort Study
    Yamamoto, Yoshinori
    Hori, Shinsuke
    Ushida, Kenta
    Shirai, Yuka
    Shimizu, Miho
    Kato, Yuki
    Momosaki, Ryo
    NEUROLOGIA MEDICO-CHIRURGICA, 2024, 64 (11) : 409 - 417
  • [9] Epidemiology of death from aneurysmal subarachnoid hemorrhage in New Mexico
    Kaloostian, Paul
    Westhout, Franklin
    Taylor, Chris L.
    JOURNAL OF NEUROINTERVENTIONAL SURGERY, 2013, 5 (05) : 410 - 412
  • [10] Modifiable Risk Factors for Aneurysmal Subarachnoid Hemorrhage
    Andreasen, Trine H.
    Bartek, Jiri, Jr.
    Andresen, Morten
    Springborg, Jacob B.
    Romner, Bertil
    STROKE, 2013, 44 (12) : 3607 - 3612