Diffusion tensor imaging for the differential diagnosis of Parkinsonism by machine learning

被引:6
|
作者
Tsai, Chih-Chien [1 ]
Chen, Yao-Liang [2 ,3 ]
Lu, Chin-Song [4 ,5 ,6 ]
Cheng, Jur-Shan [7 ,8 ]
Weng, Yi-Hsin [5 ,9 ,10 ]
Lin, Sung-Han [11 ]
Wu, Yi-Ming [3 ,12 ]
Wang, Jiun-Jie [1 ,2 ,10 ,12 ,13 ]
机构
[1] Chang Gung Univ, Hlth Aging Res Ctr, Taoyuan, Taiwan
[2] Chang Gung Mem Hosp, Dept Diagnost Radiol, Keelung, Taiwan
[3] Chang Gung Mem Hosp, Dept Med Imaging & Intervent, Taoyuan, Taiwan
[4] Prof Lu Neurol Clin, Taoyuan, Taiwan
[5] Chang Gung Mem Hosp, Dept Neurol, Div Movement Disorders, Taoyuan, Taiwan
[6] Landseed Int Hosp, Dept Neurol, Taoyuan, Taiwan
[7] Chang Gung Univ, Clin Informat & Med Stat Res Ctr, Taoyuan, Taiwan
[8] Chang Gung Mem Hosp, Dept Gastroenterol & Hepatol, Div Hepatol, Taoyuan, Taiwan
[9] Chang Gung Univ, Sch Med, Taoyuan, Taiwan
[10] Chang Gung Mem Hosp, Neurosci Res Ctr, Taoyuan, Taiwan
[11] Univ Texas Southwestern Med Ctr Dallas, Adv Imaging Res Ctr, Dallas, TX USA
[12] Chang Gung Univ, Dept Med Imaging & Radiol Sci, 259 WenHua 1st Rd, Taoyuan 333, Taiwan
[13] Chang Gung Univ, Chang Gung Mem Hosp, Inst Radiol Res, Taoyuan, Taiwan
关键词
Diffusion tensor imaging; Machine learning; Differential diagnosis; IdiopathicParkinson's disease; Parkinson-plus syndromes; PROGRESSIVE SUPRANUCLEAR PALSY; MULTIPLE SYSTEM ATROPHY; DISEASE; NUMBER; SCALE; 2ND;
D O I
10.1016/j.bj.2022.05.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: There are currently no specific tests for either idiopathic Parkinson's disease or Parkinson-plus syndromes. The study aimed to investigate the diagnostic performance of features extracted from the whole brain using diffusion tensor imaging concerning parkinsonian disorders.Methods: The retrospective data yielded 625 participants (average age: 61.4 +/- 8.2, men/ women: 313/312; healthy controls/idiopathic Parkinson's disease/multiple system atrophy/ progressive supranuclear palsy: 219/286/51/69) between 2008 and 2017. Diffusion-weighted images were obtained using a 3T MR scanner. The 90th, 50th, and 10th percentiles of frac-tional anisotropy and mean/axial/radial diffusivity from each parcellated brain area were recorded. Statistical analysis was evaluated based on the features extracted from the whole brain, as determined using discriminant function analysis and support vector machine. 20% of the participants were used as an independent blind dataset with 5 times cross-verification. Diagnostic performance was evaluated by the sensitivity and the F1 score.Results: Diagnoses were accurate for distinguishing idiopathic Parkinson's disease from healthy control and Parkinson-plus syndromes (87.4 +/- 2.1% and 82.5 +/- 3.9%, respectively). Diagnostic F1 scores varied for Parkinson-plus syndromes with 67.2 +/- 3.8% for multiple system atrophy and 71.6 +/- 3.5% for progressive supranuclear palsy. For early and late detection of idiopathic Parkinson's disease, the diagnostic performance was 79.2 +/- 7.4% and 84.4 +/- 6.9%, respectively. The diagnostic performance was 68.8 +/- 11.0% and 52.5 +/- 8.9% in early and late detection to distinguish different Parkinson-plus syndromes.Conclusions: Features extracted from diffusion tensor imaging of the whole brain can pro-vide objective evidence for the diagnosis of healthy control, idiopathic Parkinson's disease, and Parkinson-plus syndromes with fair to very good diagnostic performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Machine Learning Based Prognostic Prediction of Cervical Myelopathy Using Diffusion Tensor Imaging
    Jin, Richu
    Luk, Keith Dk
    Cheung, Jason
    Hu, Yong
    2016 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (CIVEMSA), 2016, : 62 - 65
  • [32] Machine-learning classification of 22q11.2 deletion syndrome: A diffusion tensor imaging study
    Tylee, Daniel S.
    Kikinis, Zora
    Quinn, Thomas P.
    Antshel, Kevin M.
    Fremont, Wanda
    Tahir, Muhammad A.
    Zhu, Anni
    Gong, Xue
    Glatt, Stephen J.
    Coman, Ioana L.
    Shenton, Martha E.
    Kates, Wendy R.
    Makris, Nikos
    NEUROIMAGE-CLINICAL, 2017, 15 : 832 - 842
  • [33] The utility of FDG-PET in the differential diagnosis of Parkinsonism
    Brajkovic, Leposava
    Kostic, Vladimir
    Sobic-Saranovic, Dragana
    Stefanova, Elka
    Jecmenica-Lukic, Milica
    Jesic, Ana
    Stojiljkovic, Milica
    Odalovic, Strahinja
    Gallivanone, Francesca
    Castiglioni, Isabella
    Radovic, Branislava
    Trajkovic, Goran
    Artiko, Vera
    NEUROLOGICAL RESEARCH, 2017, 39 (08) : 675 - 684
  • [34] Deep learning based diagnosis of Parkinson's Disease using diffusion magnetic resonance imaging
    Zhao, Hengling
    Tsai, Chih-Chien
    Zhou, Mingyi
    Liu, Yipeng
    Chen, Yao-Liang
    Huang, Fan
    Lin, Yu-Chun
    Wang, Jiun-Jie
    BRAIN IMAGING AND BEHAVIOR, 2022, 16 (04) : 1749 - 1760
  • [35] Brain 18F-FDG PET Imaging in the Differential Diagnosis of Parkinsonism
    Akdemir, Umit Ozgur
    Tokcaer, Ayse Bora
    Karakus, Asl
    Kapucu, Lutfiye Ozlem
    CLINICAL NUCLEAR MEDICINE, 2014, 39 (03) : E220 - E226
  • [36] Prediction of the Clinical Severity of Progressive Supranuclear Palsy by Diffusion Tensor Imaging
    Chen, Yao-Liang
    Zhao, Xiang-An
    Ng, Shu-Hang
    Lu, Chin-Song
    Lin, Yu-Chun
    Cheng, Jur-Shan
    Tsai, Chih-Chien
    Wang, Jiun-Jie
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (01)
  • [37] Combined Diffusion Tensor Imaging and Apparent Transverse Relaxation Rate Differentiate Parkinson Disease and Atypical Parkinsonism
    Du, G.
    Lewis, M. M.
    Kanekar, S.
    Sterling, N. W.
    He, L.
    Kong, L.
    Li, R.
    Huang, X.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (05) : 966 - 972
  • [38] Radiomics and supervised machine learning in the diagnosis of parkinsonism with FDG PET: promises and challenges
    Peng, Shichun
    Spetsieris, Phoebe G.
    Eidelberg, David
    Ma, Yilong
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (13)
  • [39] Development and validation of the automated imaging differentiation in parkinsonism (AID-P): a multicentre machine learning study
    Archer, Derek B.
    Bricker, Justin T.
    Chu, Winston T.
    Burciu, Roxana G.
    McCracken, Johanna L.
    Lai, Song
    Coombes, Stephen A.
    Fang, Ruogu
    Barmpoutis, Angelos
    Corcos, Daniel M.
    Kurani, Ajay S.
    Mitchell, Trina
    Black, Mieniecia L.
    Herschel, Ellen
    Simuni, Tanya
    Parrish, Todd B.
    Comella, Cynthia
    Xie, Tao
    Seppi, Klaus
    Bohnen, Nicolaas I.
    Muller, Martijn L. T. M.
    Albin, Roger L.
    Krismer, Florian
    Du, Guangwei
    Lewis, Mechelle M.
    Huang, Xuemei
    Li, Hong
    Pasternak, Ofer
    McFarland, Nikolaus R.
    Okun, Michael S.
    Vaillancourt, David E.
    LANCET DIGITAL HEALTH, 2019, 1 (05): : E222 - E231
  • [40] Diffusion tensor imaging differentiates vascular parkinsonism from parkinsonian syndromes of degenerative origin in elderly subjects
    Deverdun, Jeremy
    de Champfleur, Sophie Menjot
    Cabello-Aguilar, Simon
    Maury, Florence
    Molino, Francois
    Charif, Mahmoud
    Leboucq, Nicolas
    Ayrignac, Xavier
    Labauge, Pierre
    Bonafe, Alain
    Castelnovo, Giovanni
    Le Bars, Emmanuelle
    Geny, Christian
    de Champfleur, Nicolas Menjot
    EUROPEAN JOURNAL OF RADIOLOGY, 2014, 83 (11) : 2074 - 2079