CSNet: a ConvNeXt-based Siamese network for RGB-D salient object detection

被引:2
|
作者
Zhang, Yunhua [1 ,2 ]
Wang, Hangxu [1 ]
Yang, Gang [1 ]
Zhang, Jianhao [1 ]
Gong, Congjin [1 ]
Wang, Yutao [1 ]
机构
[1] Northeastern Univ, Shenyang 110819, Peoples R China
[2] DUT Artificial Intelligence Inst, Dalian 116024, Peoples R China
来源
VISUAL COMPUTER | 2024年 / 40卷 / 03期
基金
中国国家自然科学基金;
关键词
Salient object detection; Siamese network; ConvNeXt; RGB-D SOD; Multi-modality;
D O I
10.1007/s00371-023-02887-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Global contexts are critical to locating salient objects for salient object detection (SOD). However, the convolution operation in CNNs has a local receptive field, which cannot capture long-distance global information. Recent studies have shown that modernized CNN models with large kernel convolution, such as ConvNeXt, can effectively extend the receptive fields. Based on it, this paper explores the potential of large kernel CNN for SOD task. Inspired by the common information between RGB and depth images in salient objects, we propose a ConvNeXt-based Siamese network with shared weight parameters. This structural design can effectively reduce the number of parameters without sacrificing performance. Furthermore, a depth information preprocessing module is proposed to minimize the impact of low-quality depth images on predicted saliency maps. For cross-modal feature interaction, a dynamic fusion module is designed to enhance cross-modal complementarity dynamically. Extensive experiments and evaluation results on six benchmark datasets demonstrate the outstanding performance of the proposed method against 14 state-of-the-art RGB-D methods. Our code will be released at .
引用
收藏
页码:1805 / 1823
页数:19
相关论文
共 50 条
  • [1] CSNet: a ConvNeXt-based Siamese network for RGB-D salient object detection
    Yunhua Zhang
    Hangxu Wang
    Gang Yang
    Jianhao Zhang
    Congjin Gong
    Yutao Wang
    The Visual Computer, 2024, 40 : 1805 - 1823
  • [2] Siamese Network for RGB-D Salient Object Detection and Beyond
    Fu, Keren
    Fan, Deng-Ping
    Ji, Ge-Peng
    Zhao, Qijun
    Shen, Jianbing
    Zhu, Ce
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5541 - 5559
  • [3] SiaTrans: Siamese transformer network for RGB-D salient object detection with depth image classification
    Jia, XingZhao
    DongYe, ChangLei
    Peng, YanJun
    IMAGE AND VISION COMPUTING, 2022, 127
  • [4] AirSOD: A Lightweight Network for RGB-D Salient Object Detection
    Zeng, Zhihong
    Liu, Haijun
    Chen, Fenglei
    Tan, Xiaoheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1656 - 1669
  • [5] Circular Complement Network for RGB-D Salient Object Detection
    Bai, Zhen
    Liu, Zhi
    Li, Gongyang
    Ye, Linwei
    Wang, Yang
    NEUROCOMPUTING, 2021, 451 : 95 - 106
  • [6] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1949 - 1961
  • [7] Bilateral Attention Network for RGB-D Salient Object Detection
    Zhang, Zhao
    Lin, Zheng
    Xu, Jun
    Jin, Wen-Da
    Lu, Shao-Ping
    Fan, Deng-Ping
    IEEE Transactions on Image Processing, 2021, 30 : 1949 - 1961
  • [8] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [9] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [10] Dynamic Selective Network for RGB-D Salient Object Detection
    Wen, Hongfa
    Yan, Chenggang
    Zhou, Xiaofei
    Cong, Runmin
    Sun, Yaoqi
    Zheng, Bolun
    Zhang, Jiyong
    Bao, Yongjun
    Ding, Guiguang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 9179 - 9192