CIForm as a Transformer-based model for cell-type annotation of large-scale single-cell RNA-seq data

被引:21
|
作者
Xu, Jing [1 ,2 ]
Zhang, Aidi [1 ]
Liu, Fang [1 ]
Chen, Liang [1 ]
Zhang, Xiujun [1 ]
机构
[1] Chinese Acad Sci, Key Lab Plant Germplasm Enhancement & Specialty Ag, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type annotation; deep learning; Transformer; scRNA-seq; large-scale dataset; HETEROGENEITY; ATLAS;
D O I
10.1093/bib/bbad195
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell omics technologies have made it possible to analyze the individual cells within a biological sample, providing a more detailed understanding of biological systems. Accurately determining the cell type of each cell is a crucial goal in single-cell RNA-seq (scRNA-seq) analysis. Apart from overcoming the batch effects arising from various factors, single-cell annotation methods also face the challenge of effectively processing large-scale datasets. With the availability of an increase in the scRNA-seq datasets, integrating multiple datasets and addressing batch effects originating from diverse sources are also challenges in cell-type annotation. In this work, to overcome the challenges, we developed a supervised method called CIForm based on the Transformer for cell-type annotation of large-scale scRNA-seq data. To assess the effectiveness and robustness of CIForm, we have compared it with some leading tools on benchmark datasets. Through the systematic comparisons under various cell-type annotation scenarios, we exhibit that the effectiveness of CIForm is particularly pronounced in cell-type annotation. The source code and data are available at .
引用
收藏
页数:11
相关论文
共 50 条
  • [41] scMMT: a multi-use deep learning approach for cell annotation, protein prediction and embedding in single-cell RNA-seq data
    Zhou, Songqi
    Li, Yang
    Wu, Wenyuan
    Li, Li
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [42] scDOT: enhancing single-cell RNA-Seq data annotation and uncovering novel cell types through multi-reference integration
    Xiong, Yi-Xuan
    Zhang, Xiao-Fei
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (02)
  • [43] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [44] Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data
    Zhang, Yaru
    Ma, Yunlong
    Huang, Yukuan
    Zhang, Yan
    Jiang, Qi
    Zhou, Meng
    Su, Jianzhong
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2953 - 2961
  • [45] scENT for Revealing Gene Clusters From Single-Cell RNA-Seq Data
    Rao, Fan
    Chen, Minghan
    Yang, Defu
    Morrell, Bess
    Song, Qianqian
    Zhu, Wentao
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (03) : 2266 - 2277
  • [46] scDFC: A deep fusion clustering method for single-cell RNA-seq data
    Hu, Dayu
    Liang, Ke
    Zhou, Sihang
    Tu, Wenxuan
    Liu, Meng
    Liu, Xinwang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [47] An optimized graph-based structure for single-cell RNA-seq cell-type classification based on non-linear dimension reduction
    Saeedeh Akbari Rokn Abadi
    Seyed Pouria Laghaee
    Somayyeh Koohi
    BMC Genomics, 24
  • [48] Identification of innate lymphoid cells in single-cell RNA-Seq data
    Suffiotti, Madeleine
    Carmona, Santiago J.
    Jandus, Camilla
    Gfeller, David
    IMMUNOGENETICS, 2017, 69 (07) : 439 - 450
  • [49] ascend: R package for analysis of single-cell RNA-seq data
    Senabouth, Anne
    Lukowski, Samuel W.
    Hernandez, Jose Alquicira
    Andersen, Stacey B.
    Mei, Xin
    Nguyen, Quan H.
    Powell, Joseph E.
    GIGASCIENCE, 2019, 8 (08):
  • [50] Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
    Lytal, Nicholas
    Ran, Di
    An, Lingling
    FRONTIERS IN GENETICS, 2020, 11