Data-driven invariant modelling patterns for digital twin design

被引:21
|
作者
Semeraro, Concetta [1 ,2 ,3 ]
Lezoche, Mario [2 ]
Panetto, Herve [2 ]
Dassisti, Michele [3 ]
机构
[1] Univ Sharjah, Dept Ind & Management Engn, Sharjah, U Arab Emirates
[2] Univ Lorraine, CNRS, CRAN, Nancy, France
[3] Polytech Univ Bari, Dept Mech Management & Math DMMM, Bari, Italy
关键词
Invariance; Modelling patterns; Digital twin; Data-driven; Cyber-physical systems; Die-casting; PROCESS FAULT-DETECTION; KNOWLEDGE DISCOVERY; QUANTITATIVE MODEL; CONCEPT LATTICES; DIAGNOSIS; PROGNOSTICS; FRAMEWORK; PARADIGM;
D O I
10.1016/j.jii.2022.100424
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Digital Twin (DT) is one of the most promising technologies in the digital transformation market. A digital twin is a virtual copy of a physical system that emulates its behaviour to predict failures and opportunities for change, prescribe actions in real-time, and optimise and/or mitigate unexpected events. Modelling the virtual copy of a physical system is a rather complex task and requires the availability of a large amount of information and a set of accurate models that adequately represent the reality to model. At present, the modelling depends on the specific use case. Hence, the need to design a modelling solution suitable for virtual reality modelling in the context of a digital twin. The paper proposes a new approach to design a DT by endeavouring the concept of "modelling patterns" and their invariance property. Modelling patterns are here thought of as data-driven, as they can be derived autonomously from data using a specific approach devised to reach an invariance feature, to allow these to be used (and re-used) in modelling situations and/or problems with any given degree of similarity. The potentialities of invariance modelling patterns are proved here by the grace of a real industrial application, where a dedicated DT has been built using the approach proposed here.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Data-driven digital twin method for leak detection in natural gas pipelines
    Liang, Jing
    Ma, Li
    Liang, Shan
    Zhang, Hao
    Zuo, Zhonglin
    Dai, Juan
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [22] An advanced resin reaction modeling using data-driven and digital twin techniques
    Chady Ghnatios
    Pierre Gérard
    Anais Barasinski
    International Journal of Material Forming, 2023, 16
  • [23] Data-driven Digital Twin approach for process optimization: an industry use case
    Stojanovic, Nenad
    Milenovic, Dejan
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4202 - 4211
  • [24] A Big Data-driven Digital Twin Model Method for Building a Shop Floor
    Yan, Jihong
    Ji, Siyang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (12): : 63 - 77
  • [25] Operation Optimization Framework for Advanced Reactors Using a Data-Driven Digital Twin
    Rivas, Andy
    Delipei, Gregory K.
    Hou, Jason
    JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE, 2025, 11 (02):
  • [26] The rise of data-driven modelling
    不详
    NATURE REVIEWS PHYSICS, 2021, 3 (06) : 383 - 383
  • [27] Digital Twin Framework for Aircraft Lifecycle Management Based on Data-Driven Models
    Kabashkin, Igor
    MATHEMATICS, 2024, 12 (19)
  • [28] An advanced resin reaction modeling using data-driven and digital twin techniques
    Ghnatios, Chady
    Gerard, Pierre
    Barasinski, Anais
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2023, 16 (01)
  • [29] Network Traffic Prediction Model in a Data-Driven Digital Twin Network Architecture
    Shin, Hyeju
    Oh, Seungmin
    Isah, Abubakar
    Aliyu, Ibrahim
    Park, Jaehyung
    Kim, Jinsul
    ELECTRONICS, 2023, 12 (18)
  • [30] Augmented Data-Driven Machine Learning for Digital Twin of Stud Shear Connections
    Roh, Gi-Tae
    Vu, Nhung
    Jeon, Chi-Ho
    Shim, Chang-Su
    BUILDINGS, 2024, 14 (02)