Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative

被引:7
|
作者
Yeoh, Pauline Shan Qing [1 ]
Lai, Khin Wee [1 ]
Goh, Siew Li [2 ]
Hasikin, Khairunnisa [1 ]
Wu, Xiang [3 ]
Li, Pei [4 ]
机构
[1] Univ Malaya, Dept Biomed Engn, Kuala Lumpur, Malaysia
[2] Univ Malaya, Fac Med, Kuala Lumpur, Malaysia
[3] Xuzhou Med Univ, Sch Med Informat & Engn, Xuzhou, Peoples R China
[4] Xuzhou Med Univ, Affiliated Hosp, Informat Dept, Xuzhou, Peoples R China
关键词
convolutional neural network; deep learning; disease classification; knee osteoarthritis; magnetic resonance imaging; CARTILAGE; MRI;
D O I
10.3389/fbioe.2023.1164655
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Knee osteoarthritis is one of the most common musculoskeletal diseases and is usually diagnosed with medical imaging techniques. Conventionally, case identification using plain radiography is practiced. However, we acknowledge that knee osteoarthritis is a 3D complexity; hence, magnetic resonance imaging will be the ideal modality to reveal the hidden osteoarthritis features from a three-dimensional view. In this work, the feasibility of well-known convolutional neural network (CNN) structures (ResNet, DenseNet, VGG, and AlexNet) to distinguish knees with and without osteoarthritis (OA) is investigated. Using 3D convolutional layers, we demonstrated the potential of 3D convolutional neural networks of 13 different architectures in knee osteoarthritis diagnosis. We used transfer learning by transforming 2D pre-trained weights into 3D as initial weights for the training of the 3D models. The performance of the models was compared and evaluated based on the performance metrics [balanced accuracy, precision, F1 score, and area under receiver operating characteristic (AUC) curve]. This study suggested that transfer learning indeed enhanced the performance of the models, especially for ResNet and DenseNet models. Transfer learning-based models presented promising results, with ResNet34 achieving the best overall accuracy of 0.875 and an F1 score of 0.871. The results also showed that shallow networks yielded better performance than deeper neural networks, demonstrated by ResNet18, DenseNet121, and VGG11 with AUC values of 0.945, 0.914, and 0.928, respectively. This encourages the application of clinical diagnostic aid for knee osteoarthritis using 3DCNN even in limited hardware conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Deep learning-based segmentation of knee MRI for fully automatic subregional morphological assessment of cartilage tissues: Data from the Osteoarthritis Initiative
    Panfilov, Egor
    Tiulpin, Aleksei
    Nieminen, Miika T.
    Saarakkala, Simo
    Casula, Victor
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2022, 40 (05) : 1113 - 1124
  • [22] Composite quantitative knee structure metrics predict the development of accelerated knee osteoarthritis: data from the osteoarthritis initiative
    Harkey, Matthew S.
    Davis, Julie E.
    Price, Lori Lyn
    Ward, Robert J.
    MacKay, James W.
    Eaton, Charles B.
    Lo, Grace H.
    Barbe, Mary F.
    Zhang, Ming
    Pang, Jincheng
    Stout, Alina C.
    Lu, Bing
    McAlindon, Timothy E.
    Driban, Jeffrey B.
    BMC MUSCULOSKELETAL DISORDERS, 2020, 21 (01)
  • [23] A clinical model for predicting knee replacement in early-stage knee osteoarthritis: data from osteoarthritis initiative
    Wu, Rongjie
    Ma, Yuanchen
    Yang, Yuhui
    Li, Mengyuan
    Zheng, Qiujian
    Fu, Guangtao
    CLINICAL RHEUMATOLOGY, 2022, 41 (04) : 1199 - 1210
  • [24] PREDICTING KNEE OSTEOARTHRITIS PROGRESSION FROM STRUCTURAL MRI USING DEEP LEARNING
    Panfilov, Egor
    Saarakkala, Simo
    Nieminen, Miika T.
    Tiulpin, Aleksei
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [25] Machine-learning, MRI bone shape and important clinical outcomes in osteoarthritis: data from the Osteoarthritis Initiative
    Bowes, Michael A.
    Kacena, Katherine
    Alabas, Oras A.
    Brett, Alan D.
    Dube, Bright
    Bodick, Neil
    Conaghan, Philip G.
    ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (04) : 502 - 508
  • [26] Knee effusion volume assessed by magnetic resonance imaging and progression of knee osteoarthritis: data from the Osteoarthritis Initiative
    Wang, Yuanyuan
    Teichtahl, Andrew J.
    Pelletier, Jean-Pierre
    Abram, Francois
    Wluka, Anita E.
    Hussain, Sultana Monira
    Martel-Pelletier, Johanne
    Cicuttini, Flavia M.
    RHEUMATOLOGY, 2019, 58 (02) : 246 - 253
  • [27] Composite quantitative knee structure metrics predict the development of accelerated knee osteoarthritis: data from the osteoarthritis initiative
    Matthew S. Harkey
    Julie E. Davis
    Lori Lyn Price
    Robert J. Ward
    James W. MacKay
    Charles B. Eaton
    Grace H. Lo
    Mary F. Barbe
    Ming Zhang
    Jincheng Pang
    Alina C. Stout
    Bing Lu
    Timothy E. McAlindon
    Jeffrey B. Driban
    BMC Musculoskeletal Disorders, 21
  • [28] Deep learning approach to predict pain progression in knee osteoarthritis
    Guan, Bochen
    Liu, Fang
    Mizaian, Arya Haj
    Demehri, Shadpour
    Samsonov, Alexey
    Guermazi, Ali
    Kijowski, Richard
    SKELETAL RADIOLOGY, 2022, 51 (02) : 363 - 373
  • [29] Longitudinal change in quantitative meniscus measurements in knee osteoarthritis-data from the Osteoarthritis Initiative
    Bloecker, Katja
    Wirth, W.
    Guermazi, A.
    Hitzl, W.
    Hunter, D. J.
    Eckstein, F.
    EUROPEAN RADIOLOGY, 2015, 25 (10) : 2960 - 2968
  • [30] From classical to deep learning: review on cartilage and bone segmentation techniques in knee osteoarthritis research
    Hong-Seng Gan
    Muhammad Hanif Ramlee
    Asnida Abdul Wahab
    Yeng-Seng Lee
    Akinobu Shimizu
    Artificial Intelligence Review, 2021, 54 : 2445 - 2494