A role for ethylene signaling and biosynthesis in regulating and accelerating CO2- and abscisic acid-mediated stomatal movements in Arabidopsis

被引:8
作者
Azoulay-Shemer, Tamar [1 ,2 ]
Schulze, Sebastian [1 ]
Nissan-Roda, Dikla [2 ]
Bosmans, Krystal [1 ]
Shapira, Or [2 ]
Weckwerth, Philipp [1 ]
Zamora, Olena [3 ]
Yarmolinsky, Dmitry [3 ]
Trainin, Taly [2 ]
Kollist, Hannes [3 ]
Huffaker, Alisa [1 ]
Rappel, Wouter-Jan [4 ]
Schroeder, Julian I. [1 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, Cell & Dev Biol Sect, La Jolla, CA 92093 USA
[2] Agr Res Org ARO, Fruit Tree Sci, Volcani Ctr, Newe Yaar Res Ctr, IL-30095 Ramat Yishay, Israel
[3] Univ Tartu, Inst Technol, Plant Signal Res Grp, Nooruse 1, EE-50411 Tartu, Estonia
[4] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 以色列科学基金会;
关键词
abscisic acid (ABA); CO2; diffusion modeling; ethylene; mesophyll; stomatal conductance; SYNTHASE GENE FAMILY; RAF-LIKE KINASE; CARBON-DIOXIDE; 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID; GUARD-CELLS; VICIA-FABA; L; FRUIT; RESPONSES; CLOSURE; RECEPTOR;
D O I
10.1111/nph.18918
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Little is known about long-distance mesophyll-driven signals that regulate stomatal conductance. Soluble and/or vapor-phase molecules have been proposed. In this study, the involvement of the gaseous signal ethylene in the modulation of stomatal conductance in Arabidopsis thaliana by CO2/abscisic acid (ABA) was examined.We present a diffusion model which indicates that gaseous signaling molecule/s with a shorter/direct diffusion pathway to guard cells are more probable for rapid mesophyll-dependent stomatal conductance changes. We, therefore, analyzed different Arabidopsis ethylene-signaling and biosynthesis mutants for their ethylene production and kinetics of stomatal responses to ABA/[CO2]-shifts.According to our research, higher [CO2] causes Arabidopsis rosettes to produce more ethylene. An ACC-synthase octuple mutant with reduced ethylene biosynthesis exhibits dysfunctional CO2-induced stomatal movements. Ethylene-insensitive receptor (gain-of-function), etr1-1 and etr2-1, and signaling, ein2-5 and ein2-1, mutants showed intact stomatal responses to [CO2]-shifts, whereas loss-of-function ethylene receptor mutants, including etr2-3;ein4-4;ers2-3, etr1-6;etr2-3 and etr1-6, showed markedly accelerated stomatal responses to [CO2]-shifts. Further investigation revealed a significantly impaired stomatal closure to ABA in the ACC-synthase octuple mutant and accelerated stomatal responses in the etr1-6;etr2-3, and etr1-6, but not in the etr2-3;ein4-4;ers2-3 mutants.These findings suggest essential functions of ethylene biosynthesis and signaling components in tuning/accelerating stomatal conductance responses to CO2 and ABA.
引用
收藏
页码:2460 / 2475
页数:16
相关论文
共 21 条
  • [21] AtU2AF65b functions in abscisic acid mediated flowering via regulating the precursor messenger RNA splicing of ABI5 and FLC in Arabidopsis
    Xiong, Feng
    Ren, Jing-Jing
    Yu, Qin
    Wang, Yu-Yi
    Lu, Chong-Chong
    Kong, Lan-Jing
    Otegui, Marisa S.
    Wang, Xiu-Ling
    NEW PHYTOLOGIST, 2019, 223 (01) : 277 - 292