A Clustered Federated Learning Method of User Behavior Analysis Based on Non-IID Data

被引:1
|
作者
Zhang, Jianfei [1 ]
Li, Zhongxin [1 ]
机构
[1] Changchun Univ Sci & Technol, Sch Comp Sci & Technol, Changchun 130000, Peoples R China
关键词
federated learning; Non-IID; user behavior; user modeling;
D O I
10.3390/electronics12071660
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a novel distributed machine learning paradigm. It can protect data privacy in distributed machine learning. Hence, FL provides new ideas for user behavior analysis. User behavior analysis can be modeled using multiple data sources. However, differences between different data sources can lead to different data distributions, i.e., non-identically and non-independently distributed (Non-IID). Non-IID data usually introduce bias in the training process of FL models, which will affect the model accuracy and convergence speed. In this paper, a new federated learning algorithm is proposed to mitigate the impact of Non-IID data on the model, named federated learning with a two-tier caching mechanism (FedTCM). First, FedTCM clustered similar clients based on their data distribution. Clustering reduces the extent of Non-IID between clients in a cluster. Second, FedTCM uses asynchronous communication methods to alleviate the problem of inconsistent computation speed across different clients. Finally, FedTCM sets up a two-tier caching mechanism on the server for mitigating the Non-IID data between different clusters. In multiple simulated datasets, compared to the method without the federated framework, the FedTCM is maximum 15.8% higher than it and average 12.6% higher than it. Compared to the typical federated method FedAvg, the accuracy of FedTCM is maximum 2.3% higher than it and average 1.6% higher than it. Additionally, FedTCM achieves more excellent communication performance than FedAvg.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] FedEL: Federated ensemble learning for non-iid data
    Wu, Xing
    Pei, Jie
    Han, Xian-Hua
    Chen, Yen-Wei
    Yao, Junfeng
    Liu, Yang
    Qian, Quan
    Guo, Yike
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [22] Contractible Regularization for Federated Learning on Non-IID Data
    Chen, Zifan
    Wu, Zhe
    Wu, Xian
    Zhang, Li
    Zhao, Jie
    Yan, Yangtian
    Zheng, Yefeng
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 61 - 70
  • [23] CONVERGENCE ANALYSIS OF SEMI-FEDERATED LEARNING WITH NON-IID DATA
    Ni, Wanli
    Han, Jiachen
    Qin, Zhijin
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024, 2024, : 214 - 218
  • [24] Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Feng, Chenyuan
    Hong, Wei
    Jiang, Jiamo
    Jia, Chao
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (03) : 1927 - 1942
  • [25] Dynamic Clustering Federated Learning for Non-IID Data
    Chen, Ming
    Wu, Jinze
    Yin, Yu
    Huang, Zhenya
    Liu, Qi
    Chen, Enhong
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 119 - 131
  • [26] Data augmentation scheme for federated learning with non-IID data
    Tang L.
    Wang D.
    Liu S.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (01): : 164 - 176
  • [27] Optimizing Federated Learning on Non-IID Data with Reinforcement Learning
    Wang, Hao
    Kaplan, Zakhary
    Niu, Di
    Li, Baochun
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 1698 - 1707
  • [28] StoCFL: A stochastically clustered federated learning framework for Non-IID data with dynamic client participation
    Zeng, Dun
    Hu, Xiangjing
    Liu, Shiyu
    Yu, Yue
    Wang, Qifan
    Xu, Zenglin
    NEURAL NETWORKS, 2025, 187
  • [29] Federated Learning Based on Diffusion Model to Cope with Non-IID Data
    Zhao, Zhuang
    Yang, Feng
    Liang, Guirong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IX, 2024, 14433 : 220 - 231
  • [30] Collaborative analysis for drug discovery by federated learning on non-IID data
    Huang, Dong
    Ye, Xiucai
    Zhang, Ying
    Sakurai, Tetsuya
    METHODS, 2023, 219 : 1 - 7