Silicon flexoelectronic transistors

被引:35
作者
Guo, Di [1 ,2 ]
Guo, Pengwen [1 ,3 ]
Ren, Lele [1 ,3 ]
Yao, Yuan [1 ,2 ]
Wang, Wei [1 ,3 ]
Jia, Mengmeng [1 ,3 ]
Wang, Yulong [1 ,2 ]
Wang, Longfei [1 ,3 ]
Wang, Zhong Lin [1 ,4 ]
Zhai, Junyi [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 101400, Peoples R China
[2] Guangxi Univ, Ctr Nanoenergy Res, Sch Chem & Chem Engn, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[4] Georgia Inst Technol, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
STRAIN SENSORS; PIEZO-PHOTOTRONICS; CARBON NANOTUBES; PIEZOTRONICS; ELECTRONICS; FILMS; MOS2;
D O I
10.1126/sciadv.add3310
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is extraordinarily challenging to implement adaptive and seamless interactions between mechanical trigger-ing and current silicon technology for tunable electronics, human-machine interfaces, and micro/nanoelectro-mechanical systems. Here, we report Si flexoelectronic transistors (SFTs) that can innovatively convert applied mechanical actuations into electrical control signals and achieve directly electromechanical function. Using the strain gradient-induced flexoelectric polarization field in Si as a "gate," the metal-semiconductor interfacial Schottky barriers' heights and the channel width of SFT can be substantially modulated, resulting in tunable electronic transports with specific characteristics. Such SFTs and corresponding perception system can not only create a high strain sensitivity but also identify where the mechanical force is applied. These findings provide an in-depth understanding about the mechanism of interface gating and channel width gating in flexoelectronics and develop highly sensitive silicon-based strain sensors, which has great potential to construct the next -gen-eration silicon electromechanical nanodevices and nanosystems.
引用
收藏
页数:8
相关论文
共 60 条
[1]   Piezoelectric Mimicry of Flexoelectricity [J].
Abdollahi, Amir ;
Vasquez-Sancho, Fabian ;
Catalan, Gustau .
PHYSICAL REVIEW LETTERS, 2018, 121 (20)
[2]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[3]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[4]   Bulk ZnO as piezotronic pressure sensor [J].
Baraki, R. ;
Novak, N. ;
Froemling, T. ;
Granzow, T. ;
Roedel, J. .
APPLIED PHYSICS LETTERS, 2014, 105 (11)
[5]  
BURSIAN EV, 1968, FIZ TVERD TELA+, V10, P1121
[6]  
Catalan G, 2011, NAT MATER, V10, P963, DOI [10.1038/NMAT3141, 10.1038/nmat3141]
[7]   Integrated nanoelectronics for the future [J].
Chau, Robert ;
Doyle, Brian ;
Datta, Suman ;
Kavalieros, Jack ;
Zhang, Kevin .
NATURE MATERIALS, 2007, 6 (11) :810-812
[8]   Silicon integration for quantum sensing [J].
Dzurak, Andrew .
NATURE ELECTRONICS, 2019, 2 (07) :266-267
[9]  
Fischer-Cripps A. C., 2000, Introduction to contact mechanics
[10]   Nanomaterials in transistors: From high-performance to thin-film applications [J].
Franklin, Aaron D. .
SCIENCE, 2015, 349 (6249)