ADAPTIVE VEM: STABILIZATION-FREE A POSTERIORI ERROR ANALYSIS AND CONTRACTION PROPERTY

被引:17
作者
DA VEIGA, B. E. I. R. A. O. [1 ]
CANUTO, C. [2 ]
NOCHETTO, R. H. [3 ,4 ]
VACCA, G. [5 ]
VERANI, M. [6 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Via Roberto Cozzi 55, I-20125 Milan, Italy
[2] Politecn Torino, Dipartimento Sci Matematiche GL Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[5] Univ Bari, Dipartimento Matemat, Via Edoardo Orabona 4, I-70125 Bari, Italy
[6] Politecn Milan, Dipartimento Matemat, MOX Lab Modeling & Sci Comp, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
关键词
virtual element method; nonconforming meshes; a posteriori error analysis; stabilization; VIRTUAL ELEMENT METHOD; CONVERGENCE; ESTIMATORS;
D O I
10.1137/21M1458740
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we initiate the challenging task of building a mathematically sound theory for adaptive virtual element methods (AVEMs). Among the realm of polygonal meshes, we restrict our analysis to triangular meshes with hanging nodes in two dimensions---the simplest meshes with a systematic refinement procedure that preserves shape regularity and optimal complexity. A major challenge in the a posteriori error analysis of AVEMs is the presence of the stabilization term, which is of the same order as the residual-type error estimator but prevents the equivalence of the latter with the energy error. Under the assumption that any chain of recursively created hanging nodes has uniformly bounded length, we show that the stabilization term can be made arbitrarily small relative to the error estimator provided the stabilization parameter of the scheme is sufficiently large. This quantitative estimate leads to stabilization-free upper and lower a posteriori bounds for the energy error. This novel and crucial property of VEMs hinges on the largest subspace of continuous piecewise linear functions and the delicate interplay between its coarser scales and the finer ones of the VEM space. An important consequence for piecewise constant data is a contraction property between consecutive loops of AVEMs, which we also prove. Our results apply to H1-conforming (lowest order) VEMs of any kind, including the classical and enhanced VEMs.
引用
收藏
页码:457 / 494
页数:38
相关论文
共 46 条
[1]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[2]   Refinement of polygonal grids using Convolutional Neural Networks with applications to polygonal Discontinuous Galerkin and Virtual Element methods [J].
Antonietti, P. F. ;
Manuzzi, E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 452
[3]   Anisotropic a posteriori error estimate for the virtual element method [J].
Antonietti, P. F. ;
Berrone, S. ;
Borio, A. ;
D'Auria, A. ;
Verani, M. ;
Weisser, S. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) :1273-1312
[4]   VEM-based tracking algorithm for cohesive/frictional 2D fracture [J].
Artioli, E. ;
Marfia, S. ;
Sacco, E. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 365
[5]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[6]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[7]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[8]  
BEIRA L., ADAPTIVE VEM VARIABL
[9]   Equilibrium analysis of an immersed rigid leaflet by the virtual element method [J].
Beirao da Veiga, L. ;
Canuto, C. ;
Nochetto, R. H. ;
Vacca, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (07) :1323-1372
[10]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156