Combining atomic force microscopy with complementary techniques for multidimensional single-cell analysis

被引:7
|
作者
Li, Mi [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
atomic force microscopy; fluidic force microscopy; infrared spectroscopy; scanning near-field ultrasound holography; single-cell analysis; tip-enhanced Raman scattering; traction force microscopy; ENHANCED RAMAN-SPECTROSCOPY; LIVING CELLS; SUPERRESOLUTION MICROSCOPY; LIGHT-MICROSCOPY; HETEROGENEITY; AFM; CANCER; MECHANICS; STIFFNESS; PROTEINS;
D O I
10.1111/jmi.13183
中图分类号
TH742 [显微镜];
学科分类号
摘要
The advent of atomic force microscopy (AFM) provides an amazing instrument for characterising the structures and properties of living biological systems under aqueous conditions with unprecedented spatiotemporal resolution. In addition to its own unique capabilities for applications in life sciences, AFM is highly compatible and has been widely integrated with various complementary techniques to simultaneously sense the multidimensional (biological, chemical and physical) properties of biological systems, offering novel possibilities for comprehensively revealing the underlying mechanisms guiding life activities particularly in the studies of single cells. Herein, typical combinations of AFM and complementary techniques (including optical microscopy, ultrasound, infrared spectroscopy, Raman spectroscopy, fluidic force microscopy and traction force microscopy) and their applications in single-cell analysis are reviewed. The future perspectives are also provided.
引用
收藏
页码:69 / 96
页数:28
相关论文
共 50 条
  • [1] Advances in atomic force microscopy for single-cell analysis
    Li, Mi
    Xi, Ning
    Wang, Yuechao
    Liu, Lianqing
    NANO RESEARCH, 2019, 12 (04) : 703 - 718
  • [2] Advances in atomic force microscopy for single-cell analysis
    Mi Li
    Ning Xi
    Yuechao Wang
    Lianqing Liu
    Nano Research, 2019, 12 : 703 - 718
  • [3] Living cell study at the single-molecule and single-cell levels by atomic force microscopy
    Shi, Xiaoli
    Zhang, Xuejie
    Xia, Tie
    Fang, Xiaohong
    NANOMEDICINE, 2012, 7 (10) : 1625 - 1637
  • [4] Harnessing atomic force microscopy-based single-cell analysis to advance physical oncology
    Li, Mi
    MICROSCOPY RESEARCH AND TECHNIQUE, 2024, 87 (04) : 631 - 659
  • [5] Atomic Force Microscopy for the Examination of Single Cell Rheology
    Okajima, Takaharu
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2012, 13 (14) : 2623 - 2631
  • [6] Atomic force microscopy - looking at mechanosensors on the cell surface
    Heinisch, Juergen J.
    Lipke, Peter N.
    Beaussart, Audrey
    Chatel, Sofiane El Kirat
    Dupres, Vincent
    Alsteens, David
    Dufrene, Yves F.
    JOURNAL OF CELL SCIENCE, 2012, 125 (18) : 4189 - 4195
  • [7] Combining Atomic Force Microscopy With Optical Image Recognition for Rapid Measurements of Single-cell Mechanical Properties
    Lu, Xiao-Long
    Wei, Jia-Jia
    Zhang, Zhi-Hui
    Li, Mi
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2023, 50 (08) : 2018 - 2029
  • [8] Monitoring of adipogenic differentiation at the single-cell level using atomic force microscopic analysis
    Kwon, Young-Nam
    Kim, Won Kon
    Lee, Sang-Hak
    Kim, Keewon
    Kim, Eun Young
    Ha, Tai Hwan
    Han, HyoukSoo
    Bae, Kwang-Hee
    SPECTROSCOPY-BIOMEDICAL APPLICATIONS, 2011, 26 (06): : 329 - 335
  • [9] Combining Micropipette and Atomic Force Microscopy for Single cell Drug Delivery and Simultaneous Cell Mechanics Measurement
    Feng Ya-Qi
    Yu Peng
    Shi Jia-Lin
    Li Mi
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2022, 49 (02) : 420 - 430
  • [10] Chondrocyte cell adhesion on chitosan supports using single-cell atomic force microscopy
    Garcia Garcia, Christian Enrique
    Verdier, Claude
    Lardy, Bernard
    Bossard, Frederic
    Armando Soltero Martinez, J. Felix
    Rinaudo, Marguerite
    INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2022, 27 (01) : 71 - 85