Muon g-2 with overlap valence fermions

被引:12
|
作者
Wang, Gen [1 ,2 ]
Draper, Terrence [2 ]
Liu, Keh-Fei [2 ]
Yang, Yi-Bo [3 ,4 ,5 ,6 ]
机构
[1] Aix Marseille Univ, Univ Toulon, CNRS, CPT,Marseille UMR 7332, Marseille, France
[2] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
[3] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[5] UCAS, Hangzhou Inst Adv Study, Sch Fundamental Phys & Math Sci, Hangzhou 310024, Peoples R China
[6] Int Ctr Theoret Phys Asia Pacific, Beijing Hangzhou 100019, Peoples R China
基金
美国国家科学基金会;
关键词
ANOMALOUS MAGNETIC-MOMENT; LATTICE QCD;
D O I
10.1103/PhysRevD.107.034513
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a lattice calculation of the leading order hadronic vacuum polarization contribution to the muon anomalous magnetic moment for the connected light and strange quarks, aWcon;l=sin the widely used window t0 = 0.4 fm, t1 = 1.0 fm, Delta = 0.15 fm, and also of aScon;l=s in the short distance region. We use overlap fermions on four physical-point ensembles. Two 2 + 1 flavor RBC/UKQCD ensembles use domain wall fermions and Iwasaki gauge actions at a = 0.084 and 0.114 fm, and two 2 + 1 + 1 flavor MILC ensembles use the highly improved staggered quark and Symanzik gauge actions at a = 0.088 and 0.121 fm. We have incorporated infinite volume corrections from three additional domain wall fermion ensembles at L = 4.8, 6.4, and 9.6 fm and physical pion mass. For aWcon;l, we find that our results on the two smaller lattice spacings are consistent with those using the unitary setup, but those at the two coarser lattice spacings are slightly different. Eventually, we predict aWcon;l = 206.7(1.5)(1.0) and aWcon;s = 26.8(0.1)(0.3), using linear extrapolation in a2, with systematic uncertainties estimated from the difference of the central values from the RBC/UKQCD and MILC ensembles.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Current status of the muon g-2
    Dorokhov, A. E.
    Radzhabov, A. E.
    Zhevlakov, A. S.
    XVI WORKSHOP ON HIGH ENERGY SPIN PHYSICS (D-SPIN2015), 2016, 678
  • [12] The Muon g-2 experiment at Fermilab
    Mott, James
    HYPERFINE INTERACTIONS, 2018, 239
  • [13] Theory review of the muon g-2
    Melnikov, Kirill
    INTERNATIONAL WORKSHOP ON FLAVOUR CHANGING AND CONSERVING PROCESSES 2015 (FCCP 2015), 2016, 118
  • [14] g-2 of the muon: status report
    Hagiwara, K.
    Keshavarzi, A.
    Martin, A. D.
    Nomura, D.
    Teubner, T.
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2017, 287 : 33 - 38
  • [15] The new muon g-2 experiment at Fermilab
    Kawall, D.
    11TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS (CIPANP 2012), 2013, 1560 : 106 - 108
  • [16] Pion light-by-light contributions to the muon g-2
    Bijnens, Johan
    Relefors, Johan
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (09):
  • [17] Muon g-2 theory: The hadronic part
    Jegerlehner, Fred
    KLOE-2 WORKSHOP ON E+ E- COLLISION PHYSICS AT 1 GEV, 2018, 166
  • [18] Fourth generation leptons and muon g-2
    Hou, Wei-Shu
    Lee, Fei-Fan
    Ma, Chien-Yi
    PHYSICAL REVIEW D, 2009, 79 (07):
  • [19] Standard Model Predictions for the Muon (g-2)/2
    Eidelman, S.
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 189 : 208 - 215
  • [20] Explaining muon g-2 data in the μνSSM
    Kpatcha, Essodjolo
    Lara, Inaki
    Lopez-Fogliani, Daniel E.
    Munoz, Carlos
    Nagata, Natsumi
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (02):