Quantum Advantage of Thermal Machines with Bose and Fermi Gases

被引:12
作者
Sur, Saikat [1 ]
Ghosh, Arnab [2 ]
机构
[1] Weizmann Inst Sci, Dept Chem & Biol Phys, IL-7610001 Rehovot, Israel
[2] Indian Inst Technol, Dept Chem, Kanpur 208016, India
关键词
quantum thermodynamics; heat engine; refrigerator; Fermi gas; Bose gas; PERFORMANCE; WORKING; THERMODYNAMICS; OPTIMIZATION; FRICTION; CYCLE; ATOM;
D O I
10.3390/e25020372
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we show that a quantum gas, a collection of massive, non-interacting, indistinguishable quantum particles, can be realized as a thermodynamic machine as an artifact of energy quantization and, hence, bears no classical analog. Such a thermodynamic machine depends on the statistics of the particles, the chemical potential, and the spatial dimension of the system. Our detailed analysis demonstrates the fundamental features of quantum Stirling cycles, from the viewpoint of particle statistics and system dimensions, that helps us to realize desired quantum heat engines and refrigerators by exploiting the role of quantum statistical mechanics. In particular, a clear distinction between the behavior of a Fermi gas and a Bose gas is observed in one dimension, rather than in higher dimensions, solely due to the innate differences in their particle statistics indicating the conspicuous role of a quantum thermodynamic signature in lower dimensions.
引用
收藏
页数:19
相关论文
共 50 条
[31]   A finite-time quantum Otto engine with tunnel coupled one-dimensional Bose gases [J].
Nautiyal, V. V. ;
Watson, R. S. ;
Kheruntsyan, K., V .
NEW JOURNAL OF PHYSICS, 2024, 26 (06)
[32]   Virial coefficients for trapped Bose and Fermi gases beyond the unitary limit: An S-matrix approach [J].
Marcelino, Edgar ;
Nicolai, Andre ;
Roditi, Itzhak ;
LeClair, Andre .
PHYSICAL REVIEW A, 2014, 90 (05)
[33]   Maximally efficient quantum thermal machines fueled by nonequilibrium steady states [J].
Santos, Tiago F. F. ;
Tacchino, Francesco ;
Gerace, Dario ;
Campisi, Michele ;
Santos, Marcelo F. .
PHYSICAL REVIEW A, 2021, 103 (06)
[34]   Hybrid quantum thermal machines with dynamical couplings [J].
Cavaliere, Fabio ;
Razzoli, Luca ;
Carrega, Matteo ;
Benenti, Giuliano ;
Sassetti, Maura .
ISCIENCE, 2023, 26 (03)
[35]   Quantum thermal machines driven by vacuum forces [J].
Tercas, Hugo ;
Ribeiro, Sofia ;
Pezzutto, Marco ;
Omar, Yasser .
PHYSICAL REVIEW E, 2017, 95 (02)
[36]   Innovative Designs and Insights into Quantum Thermal Machines [J].
Lucio, Aline Duarte ;
Rojas, Moises ;
Filgueiras, Cleverson .
QUANTUM REPORTS, 2025, 7 (02)
[37]   Effects of magnetic anisotropy on three-qubit antiferromagnetic thermal machines [J].
Castorene, Bastian ;
Pena, Francisco J. ;
Norambuena, Ariel ;
Ulloa, Sergio E. ;
Araya, Cristobal ;
Vargas, Patricio .
PHYSICAL REVIEW E, 2024, 110 (04)
[38]   Quench dynamics of thermal Bose gases across wide and narrow Feshbach resonances [J].
Yang, Xiaoyi ;
Zhang, Ren .
PHYSICAL REVIEW A, 2023, 107 (06)
[39]   Thermal Dissipation in Two Dimensional Relativistic Fermi Gases with a Relaxation Time Model [J].
Mendez, A. R. ;
Garcia-Perciante, A. L. ;
Chacon-Acosta, G. .
JOURNAL OF STATISTICAL PHYSICS, 2020, 178 (04) :936-953
[40]   Strongly correlated Bose gases [J].
Chevy, F. ;
Salomon, C. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (19)