Quantum Advantage of Thermal Machines with Bose and Fermi Gases

被引:12
作者
Sur, Saikat [1 ]
Ghosh, Arnab [2 ]
机构
[1] Weizmann Inst Sci, Dept Chem & Biol Phys, IL-7610001 Rehovot, Israel
[2] Indian Inst Technol, Dept Chem, Kanpur 208016, India
关键词
quantum thermodynamics; heat engine; refrigerator; Fermi gas; Bose gas; PERFORMANCE; WORKING; THERMODYNAMICS; OPTIMIZATION; FRICTION; CYCLE; ATOM;
D O I
10.3390/e25020372
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we show that a quantum gas, a collection of massive, non-interacting, indistinguishable quantum particles, can be realized as a thermodynamic machine as an artifact of energy quantization and, hence, bears no classical analog. Such a thermodynamic machine depends on the statistics of the particles, the chemical potential, and the spatial dimension of the system. Our detailed analysis demonstrates the fundamental features of quantum Stirling cycles, from the viewpoint of particle statistics and system dimensions, that helps us to realize desired quantum heat engines and refrigerators by exploiting the role of quantum statistical mechanics. In particular, a clear distinction between the behavior of a Fermi gas and a Bose gas is observed in one dimension, rather than in higher dimensions, solely due to the innate differences in their particle statistics indicating the conspicuous role of a quantum thermodynamic signature in lower dimensions.
引用
收藏
页数:19
相关论文
共 50 条
[11]   The Variational Reduction for Low-Dimensional Fermi Gases and Bose-Fermi Mixtures: A Brief Review [J].
Diaz, Pablo ;
Laroze, David ;
Malomed, Boris A. .
CONDENSED MATTER, 2019, 4 (01) :1-22
[12]   Spinor Bose gases: Symmetries, magnetism, and quantum dynamics [J].
Stamper-Kurn, Dan M. ;
Ueda, Masahito .
REVIEWS OF MODERN PHYSICS, 2013, 85 (03) :1191-1244
[13]   Many-body quantum thermal machines [J].
Mukherjee, Victor ;
Divakaran, Uma .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (45)
[14]   Geometric properties of adiabatic quantum thermal machines [J].
Bhandari, Bibek ;
Terren Alonso, Pablo ;
Taddei, Fabio ;
von Oppen, Felix ;
Fazio, Rosario ;
Arrachea, Liliana .
PHYSICAL REVIEW B, 2020, 102 (15)
[15]   Quantum Field Thermal Machines [J].
Gluza, Marek ;
Sabino, Joao ;
Ng, Nelly H. Y. ;
Vitagliano, Giuseppe ;
Pezzutto, Marco ;
Omar, Yasser ;
Mazets, Igor ;
Huber, Marcus ;
Schmiedmayer, Jorg ;
Eisert, Jens .
PRX QUANTUM, 2021, 2 (03)
[16]   Markovian master equations for quantum thermal machines: local versus global approach [J].
Hofer, Patrick P. ;
Perarnau-Llobet, Marti ;
Miranda, L. David M. ;
Haack, Geraldine ;
Silva, Ralph ;
Brask, Jonatan Bohr ;
Brunner, Nicolas .
NEW JOURNAL OF PHYSICS, 2017, 19
[17]   Dissipation-induced collective advantage of a quantum thermal machine [J].
Carrega, Matteo ;
Razzoli, Luca ;
Erdman, Paolo Andrea ;
Cavaliere, Fabio ;
Benenti, Giuliano ;
Sassetti, Maura .
AVS QUANTUM SCIENCE, 2024, 6 (02)
[18]   Power-law scalings in weakly-interacting Bose gases at quantum criticality [J].
Liang, Ming-Cheng ;
Lin, Zhi-Xing ;
Chen, Yang-Yang ;
Guan, Xi-Wen ;
Zhang, Xibo .
FRONTIERS OF PHYSICS, 2022, 17 (06)
[19]   Phase transitions in real gases and ideal Bose gases [J].
Maslov, V. P. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 167 (02) :654-667
[20]   Measuring Pair Correlations in Bose and Fermi Gases via Atom-Resolved Microscopy [J].
Yao, Ruixiao ;
Chi, Sungjae ;
Wang, Mingxuan ;
Fletcher, Richard J. ;
Zwierlein, Martin .
PHYSICAL REVIEW LETTERS, 2025, 134 (18)