Fracture features of brittle coal under uniaxial and cyclic compression loads

被引:32
|
作者
Song, Shikang [1 ]
Ren, Ting [2 ]
Dou, Linming [3 ]
Sun, Jian [4 ]
Yang, Xiaohan [5 ]
Tan, Lihai [2 ,3 ]
机构
[1] Shaanxi Zhengtong Coal Ind Co Ltd, Xianyang 713600, Peoples R China
[2] Univ Wollongong, Sch Civil Min & Environm Engn, Wollongong 2522, Australia
[3] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Xuzhou 221116, Peoples R China
[4] Anhui Univ Sci & Technol, Sch Energy & Safety Engn, Huainan 232001, Peoples R China
[5] Univ Queensland, Sch Civil Engn, Brisbane 4072, Australia
关键词
Fracture; Crack; Coal burst; Acoustic emission; Computed tomography; ENERGY-DISSIPATION; ACOUSTIC-EMISSION; DAMAGE; ROCK; BEHAVIOR; FAILURE; RELEASE; BURSTS;
D O I
10.1007/s40789-023-00564-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Under the effects of complex geological and stress environments, burst hazards continue to be a major challenge for underground space utilization and deep resources exploration as its occurrence can lead to personnel causalities, equipment damage and structural collapse. Considering the stress path experienced by in-situ coal body, cyclic loading appears in quite various forms for instance shearer cutting, overlying strata breakage, hydro-fracturing and blasting, during tunnel, mining and underground space utilizing process. The stability of the underground coal body subject to periodic loading/unloading stress is extremely important for maintain the function of designed engineering structure for waste storage, safe mining, roadway development, gas recovery, carbon sequestration and so on. The mechanical properties of hard rock subject to cyclic fatigue loads has been intensively investigated by many researchers as the rock burst induced by supercritical loads has long been a safety risk and engineering problems for civil and tunneling engineering under deep overburden. More recently, the mechanical properties of coal samples under cyclic fatigue loads is investigated from the aspect of hysteresis, energy dissipation and irreversible damage as the burst hazards of brittle coal is rising in many countries. However, the crack propagation and fracture pattern of brittle coal need more research to understand the micro mechanism of burst incubation subject to cyclic fatigue loads as brittle coal can store more elastic strain energy and rapidly release the energy when its ultimate strength once reached. This research studied the internal crack status corresponding to different cyclic fatigue loading stage of brittle coal samples. The AE monitoring was applied during the uniaxial and cyclic loading process of brittle coal samples to record the crack intensity of samples at different loading stages. The damage evolution curve corresponding to loading status was then determined. The fracture pattern of coal samples determined by micro-CT scan was observed and discussed. It has been found by this paper that brittle coal of uniaxial compression tests demonstrated sudden failure caused by major splitting fracture while that of cyclic fatigue tests experienced progressive failure with mixture fracture network.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Anisotropy of acoustic emission in coal under the uniaxial loading condition
    Song, Honghua
    Zhao, Yixin
    Elsworth, Derek
    Jiang, Yaodong
    Wang, Jiehao
    CHAOS SOLITONS & FRACTALS, 2020, 130 (130)
  • [42] Study of the Relationship between Concrete Fracture Energy and AE Signal Energy under Uniaxial Compression
    Lu Youyuan
    Li Zongjin
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2012, 24 (05) : 538 - 547
  • [43] Fracture precursor phenomena in marble specimens under uniaxial compression by means of Acoustic Emission data
    Triantis, Dimos
    Kourkoulis, Stavros K.
    FRATTURA ED INTEGRITA STRUTTURALE-FRACTURE AND STRUCTURAL INTEGRITY, 2019, 13 (50): : 537 - 547
  • [44] Acoustic emission characteristics of marble under uniaxial cyclic loading
    Fu, Bin
    Tang, Chun'an
    GEOMECHANICS AND ENGINEERING, 2021, 27 (04) : 397 - 409
  • [45] Failure characteristics of brittle rock containing two rectangular holes under uniaxial compression and coupled static-dynamic loads
    Zhu, Quanqi
    Li, Diyuan
    Han, Zhenyu
    Xiao, Peng
    Li, Bang
    ACTA GEOTECHNICA, 2022, 17 (01) : 131 - 152
  • [46] Evolution Mechanisms of Three-Dimensional Fracture Fields in Coal Under Uniaxial Cyclic Loading and Unloading
    Xu, Jiankun
    Zhou, Rui
    Xi, Danyang
    Lin, Yichao
    Li, Xibin
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [47] Study on Loading Rate Dependence of the Coal Failure Process Based on Uniaxial Compression Test
    Xiao, Weijing
    Zhang, Dongming
    Cai, Ying
    Chu, Yapei
    PURE AND APPLIED GEOPHYSICS, 2020, 177 (10) : 4925 - 4941
  • [48] Effects of crack inclination on shear failure of brittle geomaterials under compression
    Li, Xiaozhao
    Qi, Chengzhi
    Shao, Zhushan
    Xia, Chen
    ARABIAN JOURNAL OF GEOSCIENCES, 2017, 10 (23)
  • [49] Natural joint effect on mechanical characteristics and fracture evolution of In-Site rocks under uniaxial compression
    Liu, Minghui
    Bi, Ruiyang
    Luo, Xinyao
    Du, Kun
    ENGINEERING FAILURE ANALYSIS, 2024, 157
  • [50] Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory
    Wang, Dengke
    Zeng, Fanchao
    Wei, Jianping
    Zhang, Hongtu
    Wu, Yan
    Wei, Qiang
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 196