Fracture features of brittle coal under uniaxial and cyclic compression loads

被引:32
|
作者
Song, Shikang [1 ]
Ren, Ting [2 ]
Dou, Linming [3 ]
Sun, Jian [4 ]
Yang, Xiaohan [5 ]
Tan, Lihai [2 ,3 ]
机构
[1] Shaanxi Zhengtong Coal Ind Co Ltd, Xianyang 713600, Peoples R China
[2] Univ Wollongong, Sch Civil Min & Environm Engn, Wollongong 2522, Australia
[3] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Xuzhou 221116, Peoples R China
[4] Anhui Univ Sci & Technol, Sch Energy & Safety Engn, Huainan 232001, Peoples R China
[5] Univ Queensland, Sch Civil Engn, Brisbane 4072, Australia
关键词
Fracture; Crack; Coal burst; Acoustic emission; Computed tomography; ENERGY-DISSIPATION; ACOUSTIC-EMISSION; DAMAGE; ROCK; BEHAVIOR; FAILURE; RELEASE; BURSTS;
D O I
10.1007/s40789-023-00564-x
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Under the effects of complex geological and stress environments, burst hazards continue to be a major challenge for underground space utilization and deep resources exploration as its occurrence can lead to personnel causalities, equipment damage and structural collapse. Considering the stress path experienced by in-situ coal body, cyclic loading appears in quite various forms for instance shearer cutting, overlying strata breakage, hydro-fracturing and blasting, during tunnel, mining and underground space utilizing process. The stability of the underground coal body subject to periodic loading/unloading stress is extremely important for maintain the function of designed engineering structure for waste storage, safe mining, roadway development, gas recovery, carbon sequestration and so on. The mechanical properties of hard rock subject to cyclic fatigue loads has been intensively investigated by many researchers as the rock burst induced by supercritical loads has long been a safety risk and engineering problems for civil and tunneling engineering under deep overburden. More recently, the mechanical properties of coal samples under cyclic fatigue loads is investigated from the aspect of hysteresis, energy dissipation and irreversible damage as the burst hazards of brittle coal is rising in many countries. However, the crack propagation and fracture pattern of brittle coal need more research to understand the micro mechanism of burst incubation subject to cyclic fatigue loads as brittle coal can store more elastic strain energy and rapidly release the energy when its ultimate strength once reached. This research studied the internal crack status corresponding to different cyclic fatigue loading stage of brittle coal samples. The AE monitoring was applied during the uniaxial and cyclic loading process of brittle coal samples to record the crack intensity of samples at different loading stages. The damage evolution curve corresponding to loading status was then determined. The fracture pattern of coal samples determined by micro-CT scan was observed and discussed. It has been found by this paper that brittle coal of uniaxial compression tests demonstrated sudden failure caused by major splitting fracture while that of cyclic fatigue tests experienced progressive failure with mixture fracture network.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Mechanical Responses of a Porous Red Sandstone to Quasi-Static Cyclic Loads Under Uniaxial Compression
    Zheng, Zhao-Qiang
    Liu, Huai-Zhong
    Xie, Hong-Qiang
    He, Jiang-Da
    Xiao, Ming-Li
    Zhuo, Li
    ROCK MECHANICS AND ROCK ENGINEERING, 2024, 57 (05) : 3219 - 3236
  • [32] Numerical Simulation of Failure Behavior of Brittle Heterogeneous Rock under Uniaxial Compression Test
    Liu, Jia
    Ma, Fengshan
    Guo, Jie
    Zhou, Tongtong
    Song, Yewei
    Li, Fangrui
    MATERIALS, 2022, 15 (19)
  • [33] Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression
    Yang, Sheng-Qi
    Jing, Hong-Wen
    INTERNATIONAL JOURNAL OF FRACTURE, 2011, 168 (02) : 227 - 250
  • [34] Research on anisotropic characteristics and energy damage evolution mechanism of bedding coal under uniaxial compression
    Huang, Laisheng
    Li, Bo
    Li, Chao
    Wu, Bing
    Wang, Jingxin
    ENERGY, 2024, 301
  • [35] Fracture analysis of sandstone with a single filled flaw under uniaxial compression
    Miao, Shuting
    Pan, Peng-Zhi
    Wu, Zhenhua
    Li, Shaojun
    Zhao, Shankun
    ENGINEERING FRACTURE MECHANICS, 2018, 204 : 319 - 343
  • [36] Experimental Study on Energy Evolution and Storage Performances of Rock Material under Uniaxial Cyclic Compression
    Gong, Fengqiang
    Yan, Jingyi
    Wang, Yunliang
    Luo, Song
    SHOCK AND VIBRATION, 2020, 2020
  • [37] Experimental investigation of fatigue crack propagation in interbedded marble under multilevel cyclic uniaxial compressive loads
    Wang, Yu
    Meng, Huajun
    Long, Dayu
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (04) : 933 - 951
  • [38] Effect of cyclic loading-unloading on the mechanical anisotropy of coal under uniaxial compressive condition
    Song, Honghua
    Duan, Chenxi
    Zhao, Yixin
    Teng, Teng
    Hu, Shide
    Wu, Yang
    Gong, Zhixin
    Jiang, Yaodong
    Wu, Jiayi
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (04)
  • [39] Fracture response and mechanisms of brittle rock with different numbers of openings under uniaxial loading
    Wu, Hao
    Ma, Dan
    Spearing, A. J. S.
    Zhao, Guoyan
    GEOMECHANICS AND ENGINEERING, 2021, 25 (06) : 481 - 493
  • [40] On Anisotropic Fracture Evolution and Energy Mechanism During Marble Failure Under Uniaxial Deformation
    Wang, Y.
    Tan, W. H.
    Liu, D. Q.
    Hou, Z. Q.
    Li, C. H.
    ROCK MECHANICS AND ROCK ENGINEERING, 2019, 52 (10) : 3567 - 3583