VGLL4-TEAD1 promotes vascular smooth muscle cell differentiation from human pluripotent stem cells via TET2

被引:3
|
作者
Wang, Zuxuan [1 ]
Quan, Yingyi [1 ]
Hu, Minjie [1 ]
Xu, Yubin [1 ]
Chen, Yuhao [1 ]
Jin, Peifeng [2 ]
Ma, Jianshe [1 ]
Chen, Xiufang [3 ]
Fan, Junming [1 ]
Fan, Xiaofang [1 ]
Gong, Yongsheng [1 ]
Li, Ming [3 ]
Wang, Yongyu [1 ,3 ]
机构
[1] Wenzhou Med Univ, Sch Basic Med Sci, Inst Hypoxia Med, Wenzhou 325015, Zhejiang, Peoples R China
[2] Wenzhou Med Univ, Affiliated Hosp 1, Dept Cardiothorac Surg, Wenzhou 325015, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Sch Basic Med Sci, Cardiac Regenerat Res Inst, Wenzhou 325015, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Vascular smooth muscle cell; Cell differentiation; Vestigial-like family member 4 (VGLL4); TEA domain transcription factor 1 (TEAD1); Ten-eleven-translocation 2 (TET2); Pluripotent stem cells; TRANSCRIPTION FACTOR TEAD1; TUMOR-SUPPRESSOR; VGLL4; METHYLATION; GENERATION; REGULATOR; MYOCARDIN; ENZYMES; CANCER;
D O I
10.1016/j.yjmcc.2023.01.005
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The Hippo signaling pathway plays a critical role in cardiovascular development and stem cell differentiation. Using microarray profiling, we found that the Hippo pathway components vestigial-like family member 4 (VGLL4) and TEA domain transcription factor 1 (TEAD1) were upregulated during vascular smooth muscle cell (VSMC) differentiation from H1 ESCs (H1 embryonic stem cells). To further explore the role and molecular mechanisms of VGLL4 in regulating VSMC differentiation, we generated a VGLL4-knockdown H1 ESC line (heterozygous knockout) using the CRISPR/Cas9 system and found that VGLL4 knockdown inhibited VSMC specification. In contrast, overexpression of VGLL4 using the PiggyBac transposon system facilitated VSMC differentiation. We confirmed that this effect was mediated via TEAD1 and VGLL4 interaction. In addition, bioinformatics analysis revealed that Ten-eleven-translocation 2 (TET2), a DNA dioxygenase, is a target of TEAD1, and a luciferase assay further verified that TET2 is the target of the VGLL4-TEAD1 complex. Indeed, TET2 overexpression promoted VSMC marker gene expression and countered the VGLL4 knockdown-mediated inhibitory effects on VSMC differentiation. In summary, we revealed a novel role of VGLL4 in promoting VSMC differentiation from hESCs and identified TET2 as a new target of the VGLL4-TEAD1 complex, which may demethylate VSMC marker genes and facilitate VSMC differentiation. This study provides new insights into the VGLL4-TEAD1-TET2 axis in VSMC differentiation and vascular development.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 41 条
  • [41] Interferon regulatory factor-1 together with reactive oxygen species promotes the acceleration of cell cycle progression by up-regulating the cyclin E and CDK2 genes during high glucose-induced proliferation of vascular smooth muscle cells
    Zhang, Xi
    Liu, Long
    Chen, Chao
    Chi, Ya-Li
    Yang, Xiang-Qun
    Xu, Yan
    Li, Xiao-Tong
    Guo, Shi-Lei
    Xiong, Shao-Hu
    Shen, Man-Ru
    Sun, Yu
    Zhang, Chuan-Sen
    Hu, Kai-Meng
    CARDIOVASCULAR DIABETOLOGY, 2013, 12