CONSTRUCTING MAXIMAL COFINITARY GROUPS

被引:1
|
作者
Schrittesser, David [1 ,2 ]
机构
[1] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
[2] Harbin Inst Technol, Inst Adv Study Math, 92 West Da Zhi St, Harbin 150001, Heilongjiang, Peoples R China
基金
奥地利科学基金会;
关键词
maximal cofinitary groups; definability; arithmetic; Borel; Axiom of Choice; PERMUTATION-GROUPS;
D O I
10.1017/nmj.2022.46
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Improving and clarifying a construction of Horowitz and Shelah, we show how to construct (in ZF , i.e., without using the Axiom of Choice) maximal cofinitary groups. Among the groups we construct, one is definable by a formula in second-order arithmetic with only a few natural number quantifiers.
引用
收藏
页码:622 / 651
页数:30
相关论文
共 50 条
  • [21] Constructing continuum many countable, primitive, unbalanced digraphs
    Emms, Josephine
    Evans, David M.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4475 - 4480
  • [22] New 2-closed groups that are not automorphism groups of digraphs
    Bamberg, John
    Giudici, Michael
    Smith, Jacob P.
    ALGEBRAIC COMBINATORICS, 2024, 7 (06): : 1793 - 1811
  • [23] Automorphism Groups of a Class of Cubic Cayley Graphs on Symmetric Groups
    Huang, Xueyi
    Huang, Qiongxiang
    Lu, Lu
    ALGEBRA COLLOQUIUM, 2017, 24 (04) : 541 - 550
  • [24] The maximal subgroups and the complexity of the flow semigroup of finite (di)graphs
    Horvath, Gabor
    Nehaniv, Chrystopher L.
    Podoski, Karoly
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2017, 27 (07) : 863 - 886
  • [25] The axiom of choice holds iff maximal closed filters exist
    Herrlich, H
    MATHEMATICAL LOGIC QUARTERLY, 2003, 49 (03) : 323 - 324
  • [26] Edge-primitive Cayley graphs on abelian groups and dihedral groups
    Pan, Jiangmin
    Wu, Cixuan
    Yin, Fugang
    DISCRETE MATHEMATICS, 2018, 341 (12) : 3394 - 3401
  • [27] Bounding the size of permutation groups and complex linear groups of odd order
    Robinson, Geoffrey R.
    JOURNAL OF ALGEBRA, 2011, 335 (01) : 163 - 170
  • [28] Wildness in the product groups
    Hjorth, G
    FUNDAMENTA MATHEMATICAE, 2000, 164 (01) : 1 - 33
  • [29] OVERGROUPS OF PRIMITIVE GROUPS
    Aschbacher, Michael
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 87 (01) : 37 - 82
  • [30] Countable Primitive Groups
    Tsachik Gelander
    Yair Glasner
    Geometric and Functional Analysis, 2008, 17 : 1479 - 1523