Prototype-Guided Multitask Adversarial Network for Cross-Domain LiDAR Point Clouds Semantic Segmentation

被引:10
作者
Yuan, Zhimin [1 ]
Cheng, Ming [1 ]
Zeng, Wankang [1 ]
Su, Yanfei [1 ]
Liu, Weiquan [1 ]
Yu, Shangshu [1 ]
Wang, Cheng [1 ]
机构
[1] Xiamen Univ, Sch Informat, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen 361005, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Three-dimensional displays; Point cloud compression; Prototypes; Multitasking; Laser radar; Task analysis; Feature extraction; Adversarial learning; multitask learning; point cloud; semantic segmentation; unsupervised domain adaptation (UDA); ADAPTATION;
D O I
10.1109/TGRS.2023.3234542
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Unsupervised domain adaptation (UDA) segmentation aims to leverage labeled source data to make accurate predictions on unlabeled target data. The key is to make the segmentation network learn domain-invariant representations. In this work, we propose a prototype-guided multitask adversarial network (PMAN) to achieve this. First, we propose an intensity-aware segmentation network (IAS-Net) that leverages the private intensity information of target data to substantially facilitate feature learning of the target domain. Second, the category-level cross-domain feature alignment strategy is introduced to flee the side effects of global feature alignment. It employs the prototype (class centroid) and includes two essential operations: 1) build an auxiliary nonparametric classifier to evaluate the semantic alignment degree of each point based on the prediction consistency between the main and auxiliary classifiers and 2) introduce two class-conditional point-to-prototype learning objectives for better alignment. One is to explicitly perform category-level feature alignment in a progressive manner, and the other aims to shape the source feature representation to be discriminative. Extensive experiments reveal that our PMAN outperforms state-of-the-art results on two benchmark datasets.
引用
收藏
页数:13
相关论文
共 52 条
  • [1] Self-Supervised Learning for Domain Adaptation on Point Clouds
    Achituve, Idan
    Maron, Haggai
    Chechik, Gal
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 123 - 133
  • [2] SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences
    Behley, Jens
    Garbade, Martin
    Milioto, Andres
    Quenzel, Jan
    Behnke, Sven
    Stachniss, Cyrill
    Gall, Juergen
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9296 - 9306
  • [3] Chen XY, 2019, PR MACH LEARN RES, V97
  • [4] 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks
    Choy, Christopher
    Gwak, JunYoung
    Savarese, Silvio
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3070 - 3079
  • [5] Cortinhal T, 2020, Arxiv, DOI arXiv:2003.03653
  • [6] Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis
    Dai, Angela
    Qi, Charles Ruizhongtai
    Niessner, Matthias
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 6545 - 6554
  • [7] Fan H., 2022, P IEEE CVF C COMP VI, P6377
  • [8] Fu Y., 2019, ADV NEUR IN, P7190
  • [9] 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
    Graham, Benjamin
    Engelcke, Martin
    van der Maaten, Laurens
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9224 - 9232
  • [10] Haoran Wang, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12359), P642, DOI 10.1007/978-3-030-58568-6_38