Prototype-Guided Multitask Adversarial Network for Cross-Domain LiDAR Point Clouds Semantic Segmentation

被引:12
作者
Yuan, Zhimin [1 ]
Cheng, Ming [1 ]
Zeng, Wankang [1 ]
Su, Yanfei [1 ]
Liu, Weiquan [1 ]
Yu, Shangshu [1 ]
Wang, Cheng [1 ]
机构
[1] Xiamen Univ, Sch Informat, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen 361005, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Three-dimensional displays; Point cloud compression; Prototypes; Multitasking; Laser radar; Task analysis; Feature extraction; Adversarial learning; multitask learning; point cloud; semantic segmentation; unsupervised domain adaptation (UDA); ADAPTATION;
D O I
10.1109/TGRS.2023.3234542
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Unsupervised domain adaptation (UDA) segmentation aims to leverage labeled source data to make accurate predictions on unlabeled target data. The key is to make the segmentation network learn domain-invariant representations. In this work, we propose a prototype-guided multitask adversarial network (PMAN) to achieve this. First, we propose an intensity-aware segmentation network (IAS-Net) that leverages the private intensity information of target data to substantially facilitate feature learning of the target domain. Second, the category-level cross-domain feature alignment strategy is introduced to flee the side effects of global feature alignment. It employs the prototype (class centroid) and includes two essential operations: 1) build an auxiliary nonparametric classifier to evaluate the semantic alignment degree of each point based on the prediction consistency between the main and auxiliary classifiers and 2) introduce two class-conditional point-to-prototype learning objectives for better alignment. One is to explicitly perform category-level feature alignment in a progressive manner, and the other aims to shape the source feature representation to be discriminative. Extensive experiments reveal that our PMAN outperforms state-of-the-art results on two benchmark datasets.
引用
收藏
页数:13
相关论文
共 52 条
[1]   Self-Supervised Learning for Domain Adaptation on Point Clouds [J].
Achituve, Idan ;
Maron, Haggai ;
Chechik, Gal .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, :123-133
[2]   SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Stachniss, Cyrill ;
Gall, Juergen .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9296-9306
[3]  
Chen XY, 2019, PR MACH LEARN RES, V97
[4]   4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks [J].
Choy, Christopher ;
Gwak, JunYoung ;
Savarese, Silvio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3070-3079
[5]  
Cortinhal T, 2024, Arxiv, DOI arXiv:2003.03653
[6]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[7]  
Fan H., 2022, P IEEE CVF C COMP VI, P6377
[8]  
Fu Y., 2019, ADV NEUR IN, P7190
[9]   3D Semantic Segmentation with Submanifold Sparse Convolutional Networks [J].
Graham, Benjamin ;
Engelcke, Martin ;
van der Maaten, Laurens .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9224-9232
[10]  
Hoffman J, 2016, Arxiv, DOI arXiv:1612.02649