Trapping Lithium Selenides with Evolving Heterogeneous Interfaces for High-Power Lithium-Ion Capacitors

被引:52
|
作者
Tao, Shusheng [1 ]
Momen, Roya [2 ]
Luo, Zheng [1 ]
Zhu, Yirong [3 ]
Xiao, Xuhuan
Cao, Ziwei [1 ]
Xiong, Dengyi [1 ]
Deng, Wentao [1 ]
Liu, Youcai [1 ]
Hou, Hongshuai [1 ]
Zou, Guoqiang [1 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Grubbs Inst, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
[3] Hunan Univ Technol, Coll Mat & Adv Mfg, Zhuzhou 412007, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
anode; heterostructures; lithium-ion capacitors; shuttle effect; transition metal selenides; REDUCED GRAPHENE OXIDE; CARBON-COATED COSE2; SODIUM-ION; ENHANCED PSEUDOCAPACITANCE; ANODE MATERIALS; ENERGY; NANOPARTICLES; NANOSHEETS; COMPOSITE;
D O I
10.1002/smll.202207975
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal selenides anodes with fast reaction kinetics and high theoretical specific capacity are expected to solve mismatched kinetics between cathode and anode in Li-ion capacitors. However, transition metal selenides face great challenges in the dissolution and shuttle problem of lithium selenides, which is the same as Li-Se batteries. Herein, inspired by the density functional theory calculations, heterogeneous can enhance the adsorption of Li2Se relative to single component selenide electrodes, thus inhibiting the dissolution and shuttle effect of Li2Se. A heterostructure material (denoted as CoSe2/SnSe) with the ability to evolve continuously (CoSe2/SnSe -> Co/Sn -> Co/Li13Sn5) is successfully designed by employing CoSnO3-MOF as a precursor. Impressively, CoSe2/SnSe heterostructure material delivers the ultrahigh reversible specific capacity of 510 mAh g(-1) after 1000 cycles at the high current density of 4 A g(-1). In situ XRD reveals the continuous evolution of the interface based on the transformation and alloying reactions during the charging and discharging process. Visualizations of in situ disassembly experiments demonstrate that the continuously evolving interface inhibits the shuttle of Li2Se. This research proposes an innovative approach to inhibit the dissolution and shuttling of discharge intermediates (Li2Se) of metal selenides, which is expected to be applied to metal sulfides or Li-Se and Li-S energy storage systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Mechanisms of impedance rise in high-power, lithium-ion cells
    Bloom, I
    Jones, SA
    Polzin, EG
    Battaglia, VS
    Henriksen, GL
    Motloch, CG
    Wright, RB
    Jungst, RG
    Case, HL
    Doughty, DH
    JOURNAL OF POWER SOURCES, 2002, 111 (01) : 152 - 159
  • [22] Lithium-Ion Capacitors and Hybrid Lithium-Ion Capacitors-Evaluation of Electrolyte Additives Under High Temperature Stress
    Boltersdorf, Jonathan
    Yan, Jin
    Delp, Samuel A.
    Cao, Ben
    Zheng, Jianping P.
    Jow, T. Richard
    Read, Jeffrey A.
    MRS ADVANCES, 2019, 4 (49) : 2641 - 2649
  • [23] Recent Advances and Challenges of Two-Dimensional Materials for High-Energy and High-Power Lithium-Ion Capacitors
    Su, Feng
    Hou, Xiaocheng
    Qin, Jieqiong
    Wu, Zhong-Shuai
    BATTERIES & SUPERCAPS, 2020, 3 (01) : 10 - 29
  • [24] Estimation on the pulse power capability of high-power lithium-ion battery pack
    School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
    不详
    不详
    Qiche Gongcheng, 2013, 4 (298-302):
  • [25] Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities
    Du, Huiping
    Yang, Hui
    Huang, Changshui
    He, Jianjiang
    Liu, Huibiao
    Li, Yuliang
    NANO ENERGY, 2016, 22 : 615 - 622
  • [26] Wearable high power flexible lithium-ion capacitors with adjustable areal loading
    Yuan, Tao
    Sun, Dewang
    Sun, Yonghua
    Sun, Yuanyuan
    Pang, Yuepeng
    Yang, Junhe
    Zheng, Shiyou
    CHEMICAL ENGINEERING JOURNAL, 2023, 474
  • [27] Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery
    Lin, Chun-Er
    Zhang, Hong
    Song, You-Zhi
    Zhang, Yin
    Yuan, Jia-Jia
    Zhu, Bao-Ku
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (03) : 991 - 998
  • [28] The model of PNGV of High-power Lithium-ion Battery and test validation
    Wang, Bo
    Zhou, Wei
    Shi, Hui-qi
    Li, Bin
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 270 - +
  • [29] Exfoliated graphene nanosheets as high-power anodes for lithium-ion batteries
    Vu, Duc-Luong
    Kwon, Yeon Ju
    Lee, Soon Chang
    Lee, Jea Uk
    Lee, Jae-Won
    CARBON LETTERS, 2019, 29 (01) : 81 - 87
  • [30] Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries
    Mukherjee, Rahul
    Thomas, Abhay Varghese
    Krishnamurthy, Ajay
    Koratkar, Nikhil
    ACS NANO, 2012, 6 (09) : 7867 - 7878