Trapping Lithium Selenides with Evolving Heterogeneous Interfaces for High-Power Lithium-Ion Capacitors

被引:52
|
作者
Tao, Shusheng [1 ]
Momen, Roya [2 ]
Luo, Zheng [1 ]
Zhu, Yirong [3 ]
Xiao, Xuhuan
Cao, Ziwei [1 ]
Xiong, Dengyi [1 ]
Deng, Wentao [1 ]
Liu, Youcai [1 ]
Hou, Hongshuai [1 ]
Zou, Guoqiang [1 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Grubbs Inst, Dept Chem, Shenzhen 518055, Guangdong, Peoples R China
[3] Hunan Univ Technol, Coll Mat & Adv Mfg, Zhuzhou 412007, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
anode; heterostructures; lithium-ion capacitors; shuttle effect; transition metal selenides; REDUCED GRAPHENE OXIDE; CARBON-COATED COSE2; SODIUM-ION; ENHANCED PSEUDOCAPACITANCE; ANODE MATERIALS; ENERGY; NANOPARTICLES; NANOSHEETS; COMPOSITE;
D O I
10.1002/smll.202207975
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Transition metal selenides anodes with fast reaction kinetics and high theoretical specific capacity are expected to solve mismatched kinetics between cathode and anode in Li-ion capacitors. However, transition metal selenides face great challenges in the dissolution and shuttle problem of lithium selenides, which is the same as Li-Se batteries. Herein, inspired by the density functional theory calculations, heterogeneous can enhance the adsorption of Li2Se relative to single component selenide electrodes, thus inhibiting the dissolution and shuttle effect of Li2Se. A heterostructure material (denoted as CoSe2/SnSe) with the ability to evolve continuously (CoSe2/SnSe -> Co/Sn -> Co/Li13Sn5) is successfully designed by employing CoSnO3-MOF as a precursor. Impressively, CoSe2/SnSe heterostructure material delivers the ultrahigh reversible specific capacity of 510 mAh g(-1) after 1000 cycles at the high current density of 4 A g(-1). In situ XRD reveals the continuous evolution of the interface based on the transformation and alloying reactions during the charging and discharging process. Visualizations of in situ disassembly experiments demonstrate that the continuously evolving interface inhibits the shuttle of Li2Se. This research proposes an innovative approach to inhibit the dissolution and shuttling of discharge intermediates (Li2Se) of metal selenides, which is expected to be applied to metal sulfides or Li-Se and Li-S energy storage systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Progress of high-power lithium-ion batteries
    Chen G.-X.
    Sun X.-Z.
    Zhang X.
    Wang K.
    Ma Y.-W.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 612 - 624
  • [2] High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes
    Han, Cuiping
    Shi, Ruiying
    Zhou, Dong
    Li, Hongfei
    Xu, Lei
    Zhang, Tengfei
    Li, Junqin
    Kang, Feiyu
    Wang, Guoxiu
    Li, Baohua
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (17) : 15646 - 15655
  • [3] Lithium-Ion Capacitors and Hybrid Lithium-Ion Capacitors-Evaluation of Electrolyte Additives Under High Temperature Stress
    Boltersdorf, Jonathan
    Yan, Jin
    Delp, Samuel A.
    Cao, Ben
    Zheng, Jianping P.
    Jow, T. Richard
    Read, Jeffrey A.
    MRS ADVANCES, 2019, 4 (49) : 2641 - 2649
  • [4] Energy storage mechanisms of metal selenides and application in lithium-ion capacitors
    Wei, Wenpin
    Liang, Chu
    Sun, Xianzhong
    Wang, Kai
    Zhang, Xiong
    Ma, Yanwei
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (06): : 42 - 50
  • [5] Combining energy with power: Lithium-Ion Capacitors
    Ronsmans, Jan
    Lalande, Benoit
    2015 INTERNATIONAL CONFERENCE ON ELECTRICAL SYSTEMS FOR AIRCRAFT, RAILWAY, SHIP PROPULSION AND ROAD VEHICLES (ESARS), 2015,
  • [6] Combining energy with power: Lithium-Ion Capacitors
    Ronsmans, Jan
    Lalande, Benoit
    2016 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), 2016, : 255 - 258
  • [7] We may be underestimating the power capabilities of lithium-ion capacitors
    Cementon, Chiara
    Dewar, Daniel
    Ramireddy, Thrinathreddy
    Brennan, Michael
    Glushenkov, Alexey M.
    JOURNAL OF POWER SOURCES, 2024, 591
  • [8] Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors
    Dai, Yu-Qing
    Li, Guang-Chao
    Li, Xin-Hai
    Guo, Hua-Jun
    Wang, Zhi-Xing
    Yan, Guo-Chun
    Wang, Jie-Xi
    RARE METALS, 2020, 39 (12) : 1364 - 1373
  • [9] SnS2/GDYO as a high-performance negative electrode for lithium-ion capacitors
    Zhao, Zhenzhen
    Wang, Zhe
    Shen, Xiangyan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (08) : 2753 - 2761
  • [10] Tuning the microstructures of uniform carbon spheres by controlling the annealing conditions for high-performance lithium-ion full batteries and lithium-ion capacitors
    Jiang, Sipeng
    Ji, Qianqian
    Yun, Shilin
    Zhang, Zhiqiang
    Jiang, Qingsong
    Chen, Hai Chao
    JOURNAL OF ENERGY STORAGE, 2021, 39