Deep learning-based harmonization of CT reconstruction kernels towards improved clinical task performance

被引:5
作者
Du, Dongyang [1 ,2 ,3 ,4 ,5 ]
Lv, Wenbing [1 ,2 ,3 ,4 ]
Lv, Jieqin [1 ,2 ,3 ]
Chen, Xiaohui [6 ]
Wu, Hubing [6 ]
Rahmim, Arman [5 ,7 ,8 ]
Lu, Lijun [1 ,2 ,3 ,4 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China
[2] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Guangdong, Peoples R China
[3] Southern Med Univ, Guangdong Prov Engn Lab Med Imaging & Diagnost Te, Guangzhou 510515, Guangdong, Peoples R China
[4] Pazhou Lab, Guangzhou 510330, Guangdong, Peoples R China
[5] BC Canc Res Inst, Dept Integrat Oncol, Vancouver, BC V5Z 1L3, Canada
[6] Southern Med Univ, Nanfang Hosp, Nanfang PET Ctr, Guangzhou 510515, Guangdong, Peoples R China
[7] Univ British Columbia, Dept Radiol, Vancouver, BC V5Z 1M9, Canada
[8] Univ British Columbia, Dept Phys, Vancouver, BC V5Z 1M9, Canada
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Computed tomography; Reconstruction kernel; Harmonization; Deep learning; Radiomics;
D O I
10.1007/s00330-022-09229-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To develop a deep learning-based harmonization framework, assessing whether it can improve performance of radiomics models given different kernels in different clinical tasks and additionally generalize to mitigate the effects of new/unobserved kernels on radiomics features. Methods Patient data with 2 reconstruction kernels and phantom data with 22 reconstruction kernels were included. Eighty-five patients were studied for lymph node metastasis (LNM) prediction, and 164 patients for differential diagnosis between lung cancer (LC) and pulmonary tuberculosis (TB). Two convolutional neural network (CNN) models were developed to convert images (i) from B70f to B30f (CNNa) and (ii) from B30f to B70f (CNNb). Model performance between the two kernels was evaluated using AUC and compared with other well-known harmonization methods. Patient-normalized feature difference (PNFD) was used to identify the incompatible kernels (i.e., kernel with median PNFD > 1) with baseline (B30f/B70f), and measure the ability of the CNN models to convert the non-comparable kernels. Results For LC versus pulmonary TB diagnosis, AUCs of CNNa vs. others were 0.85 vs. 0.54-0.74 (p = 0.0001-0.0003), and for CNNb vs. others: 0.87 vs. 0.54-0.86 (p = 0.0001-0.55). For LNM prediction, AUCs of CNNa vs. others were 0.68 vs. 0.56-0.61 (p = 0.10-0.39), and for CNNb vs. others: 0.78 vs. 0.70-0.73 (p = 0.07-0.40). After CNN harmonization, 17 of 20 (85%) of investigated unknown kernels produced comparable radiomics feature values relative to baseline (median PNFD from 1.10-2.31 to 0.23-1.13). Conclusion The CNN harmonization effectively improved performance of radiomics models between reconstruction kernels in different clinical tasks, and reduced feature differences between unknown kernels vs. baseline.
引用
收藏
页码:2426 / 2438
页数:13
相关论文
共 35 条
  • [21] Normalization of multicenter CT radiomics by a generative adversarial network method
    Li, Yajun
    Han, Guoqiang
    Wu, Xiaomei
    Li, Zhen Hui
    Zhao, Ke
    Zhang, Zhiping
    Liu, Zaiyi
    Liang, Changhong
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (05)
  • [22] Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis
    Ligero, Marta
    Jordi-Ollero, Olivia
    Bernatowicz, Kinga
    Garcia-Ruiz, Alonso
    Delgado-Munoz, Eric
    Leiva, David
    Mast, Richard
    Suarez, Cristina
    Sala-Llonch, Roser
    Calvo, Nahum
    Escobar, Manuel
    Navarro-Martin, Arturo
    Villacampa, Guillermo
    Dienstmann, Rodrigo
    Perez-Lopez, Raquel
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (03) : 1460 - 1470
  • [23] Liu S., 2021, ARXIV, V2110, P00041
  • [24] Matching and Homogenizing Convolution Kernels for Quantitative Studies in Computed Tomography
    Mackin, Dennis
    Ger, Rachel
    Gay, Skylar
    Dodge, Cristina
    Zhang, Lifei
    Yang, Jinzhong
    Jones, Aaron Kyle
    Court, Laurence
    [J]. INVESTIGATIVE RADIOLOGY, 2019, 54 (05) : 288 - 295
  • [25] Measuring Computed Tomography Scanner Variability of Radiomics Features
    Mackin, Dennis
    Fave, Xenia
    Zhang, Lifei
    Fried, David
    Yang, Jinzhong
    Taylor, Brian
    Rodriguez-Rivera, Edgardo
    Dodge, Cristina
    Jones, Aaron Kyle
    Court, Laurence
    [J]. INVESTIGATIVE RADIOLOGY, 2015, 50 (11) : 757 - 765
  • [26] Reproducibility of CT Radiomic Features within the Same Patient: Influence of Radiation Dose and CT Reconstruction Settings
    Meyer, Mathias
    Ronald, James
    Vernuccio, Federica
    Nelson, Rendon C.
    Ramirez-Giraldo, Juan Carlos
    Solomon, Justin
    Patel, Bhavik N.
    Samei, Ehsan
    Marin, Daniele
    [J]. RADIOLOGY, 2019, 293 (03) : 583 - 591
  • [27] Influence of CT acquisition and reconstruction parameters on radiomic feature reproducibility
    Midya, Abhishek
    Chakraborty, Jayasree
    Gonen, Mithat
    Do, Richard K. G.
    Simpson, Amber L.
    [J]. JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)
  • [28] A Guide to ComBat Harmonization of Imaging Biomarkers in Multicenter Studies
    Orlhac, Fanny
    Eertink, Jakoba J.
    Cottereau, Anne-Segolene
    Zijlstra, Josee M.
    Thieblemont, Catherine
    Meignan, Michel
    Boellaard, Ronald
    Buvat, Irene
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2022, 63 (02) : 172 - 179
  • [29] How can we combat multicenter variability in MR radiomics? Validation of a correction procedure
    Orlhac, Fanny
    Lecler, Augustin
    Savatovski, Julien
    Goya-Outi, Jessica
    Nioche, Christophe
    Charbonneau, Frederique
    Ayache, Nicholas
    Frouin, Frederique
    Duron, Loic
    Buvat, Irene
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (04) : 2272 - 2280
  • [30] Validation of a Method to Compensate Multicenter Effects Affecting CT Radiomics
    Orlhac, Fanny
    Frouin, Frederique
    Nioche, Christophe
    Ayache, Nicholas
    Buvat, Irene
    [J]. RADIOLOGY, 2019, 291 (01) : 52 - 58